The present study examined how arginine vasopressin (AVP) affects nitric oxide (NO) metabolism in cultured rat glomerular mesangial cells (GMC). GMC were incubated with test agents and nitrite, and intracellular cGMP content, inducible nitric oxide synthase (iNOS) mRNA, and iNOS protein were analyzed by the Griess method, enzyme immunoassay, and Northern and Western blotting, respectively. AVP inhibited lipopolysaccharide (LPS)- and interleukin-1β (IL-1β)-induced nitrite production in a dose- and time-dependent manner, with concomitant changes in cGMP content, iNOS mRNA, and iNOS protein. This inhibition by AVP was reversed by V1- but not by oxytocin-receptor antagonist. Inhibition by AVP was also reproduced on LPS and interferon-γ (IFN-γ). Protein kinase C (PKC) inhibitors reversed AVP inhibition, whereas PKC activator inhibited nitrite production. Although dexamethasone and pyrrolidinedithiocarbamate (PDTC), inhibitors of nuclear factor-κB, inhibited nitrite production, further inhibition by AVP was not observed. AVP did not show further inhibition of nitrite production with actinomycin D, an inhibitor of transcription, or cycloheximide, an inhibitor of protein synthesis. In conclusion, AVP inhibits LPS- and IL-1β-induced NO production through a V1 receptor. The inhibitory action of AVP involves both the activation of PKC and the transcription of iNOS mRNA in cultured rat GMC.
rHuEPO inhibits IL-1beta induced NO production by suppressing iNOS mRNA and protein expressions through EpoR, and the PLC-gamma1 and PKC pathway may be involved.
To test the hypothesis that rapid adenosine 3',5'-cyclic monophosphate (cAMP) catabolism via cyclic 3',5'-nucleotide phosphodiesterase (PDE) is a cause of the unresponsiveness to vasopressin (VP) in mice with hereditary nephrogenic diabetes insipidus (NDI), we investigated properties of PDEs and other aspects of the VP-dependent cAMP-signaling system in segments of collecting ducts [inner medullary (IMCD), cortical (CCD), and outer medullary (OMCD) ducts] microdissected from control mice and mice with NDI. The activity of cAMP-PDE, but not of cGMP-PDE, was markedly higher in IMCD (+109%), and to a lesser degree in OMCD (+41%) and CCD (+27%), of NDI mice than in normal controls. The cAMP-PDE in IMCD of NDI mice was more sensitive to inhibition by the PDE isozyme-specific inhibitors rolipram and cilostamide, but not by 3-isobutyl-1-methylxanthine, than was the cAMP-PDE in controls. Levels of cAMP in intact IMCD and CCD from NDI mice completely failed to increase in response to 10(-6) M VP. Incubation with rolipram alone, but not with cilostamide alone, restored VP-dependent cAMP accumulation in IMCD of NDI mice to the levels found in control mice; addition of cilostamide further enhanced the effect of rolipram. Analogous (but quantitatively lesser) anomalies of the VP-dependent cAMP system, including the effects of PDE inhibitors, were observed also in CCD of NDI mice. However, the activity of VP-stimulated adenylate cyclase assayed in permeabilized IMCD did not differ in NDI and control mice. These results indicate that anomalously high activities of low-Km cAMP-PDE isozymes account for the failure of collecting ducts of NDI mice to increase cAMP levels in response in VP.(ABSTRACT TRUNCATED AT 250 WORDS)
These observations suggest that rHuEpo has synergistic effects on Ang II- or NA-induced [Ca(2+)]i mobilization, particularly on intracellular Ca(2+) release, in VSMC. This may be a potential mechanism contributing to hypertension associated with rHuEpo therapy.
We examined whether phosphonoformate (PFA) can cause phosphaturia through its direct action on brush-border membrane (BBM) in vivo. Infusion of PFA or of parathyroid hormone (PTH) to thyroparathyroidectomized rats caused a marked increase in fractional excretion of phosphate without changes in excretion of Na+ or of GFR. The PFA-induced phosphaturia was not accompanied by an increase in urinary adenosine-3',5'-cyclic monophosphate (cAMP); moreover, PFA added in vitro did not influence the PTH-sensitive adenylate cyclase and cAMP-phosphodiesterase in proximal convoluted tubules. In BBM vesicles (BBMV) from rats with PFA-elicited phosphaturia, neither the rate of Na+-Pi symport nor Na+-dependent binding of [14C]PFA on BBMV was changed, whereas in BBMV from PTH-infused rats the Vmax of Na+-Pi symport decreased. PFA is almost completely ultrafiltrable; no metabolic transformation of PFA was detected after [14C]PFA exposure to rat renal cortical slices, homogenate, or to blood. We conclude that PFA causes phosphaturia by direct inhibition of Na+-Pi symport across BBM in proximal tubules, acting from the luminal side. Thus PFA (foscarnet) has a unique direct mechanism of phosphaturic effect, via its action on Pi reabsorption in proximal tubules in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.