Summary Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico‐chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live‐imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum‐induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno‐suberin coating and tyramine‐derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno‐suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti‐microbial properties, effectively contributing to resistance.
The soil borne pathogen Ralstonia solanacearum is the causing agent of bacterial wilt, a devastating disease affecting major agricultural crops. R. solanacearum enters plants through the roots and reaches the vasculature, causing rapid wilting. We recently showed that tomato varieties resistant to bacterial wilt restrict bacterial movement in the plant. In the present work we go a step forward by identifying the physico-chemical nature of the barriers induced in resistant tomato roots in response to R. solanacearum. We describe that resistant tomato specifically responds to infection by assembling de novo a structural barrier at the vasculature formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides (HCAAs). On the contrary, susceptible tomato does not form these reinforcements in response to the pathogen but instead displays lignin structural changes compatible with its degradation. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We thus propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties.
Ratiometric fluorescent nanothermometers with near‐infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature‐dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6‐trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd‐ONPs), made of optically neutral tris(2,4,6‐trichlorophenyl)methane (TTM‐αH), acting as a matrix. The excimer emission intensity of TTMd‐ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd‐ONPs show a great temperature sensitivity (3.4% K−1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd‐ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd‐ONPs are able to sense temperature changes at the nano‐microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd‐ONPs can locally monitor internal body temperature changes with spatio‐temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.
The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds’ transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.