Zero is a fundamental concept in mathematics and modern science. Empty sets are considered a precursor of the concept of numerosity zero and a part of numerical continuum. How is numerosity zero (the absence of visual items) represented in the primate cortex? To address this question, we trained monkeys to perform numerical operations including numerosity zero. Here we show a group of neurons in the posterior parietal cortex of the monkey activated in response to numerosity ‘zero’. ‘Zero’ neurons are classified into exclusive and continuous types; the exclusive type discretely encodes numerical absence and the continuous type encodes numerical absence as a part of a numerical continuum. “Numerosity-zero” neurons enhance behavioral discrimination of not only zero numerosity but also non-zero numerosities. Representation of numerosity zero in the parietal cortex may be a precursor of non-verbal concept of zero in primates.
The semi-sitting position is well known to neurosurgeons. However, there are few reports of microvascular decompression surgery for glossopharyngeal neuralgia performed using the semi-sitting position. The semi-sitting position is not widely adopted in Japan, but it is considered to be a very useful neurosurgical position. Microvascular decompression surgery for glossopharyngeal neuralgia is a relatively rare procedure, and the semi-sitting position is very effective, considering the possibility of intraoperative cardiac arrest and postoperative complications of lower cranial nerve palsy. This report describes two cases of glossopharyngeal neuralgia operated in the semi-sitting position. Microvascular decompression was performed on both patients, and postoperative pain controls were good and no complications were observed. We show that the use of the semi-sitting position to perform microvascular decompression for glossopharyngeal neuralgia provides an excellent surgical view of the brainstem.
Previous studies have shown that elementary aspects of numerical abilities have developed in non-human primates. In the present study, we explored the potential for the development of a novel ability in the use of numerical operations by macaque monkeys (Macaca fuscata): adequate selection of a series of numerical actions toward achieving a behavioral goal. We trained monkeys to use a pair of devices to selectively add or subtract items to/from a digital array in order to match a previously viewed sample array. The monkeys determined whether to add or subtract on the basis of the feedback about numerosity given to the monkeys, which was displayed as an outcome of each step of the numerical operation. We also found that monkeys adapted flexibly to changes in the numerical rule that determined the relationship between device use and numerical operation. Our model analysis found that the numerosity-based model was a better fit for the monkeys' performance than was the reward-expectation-based model. Such a capacity for goal-oriented selection of numerical operations suggests a mechanism by which monkeys use numerical representations for purposeful behaviors.
OBJECTIVE Hypoperfusion during carotid artery cross-clamping (CC) for carotid endarterectomy (CEA) may result in the major complication of perioperative stroke. Median nerve somatosensory evoked potential (MNSSEP) monitoring, which is an established method for the prediction of cerebral ischemia, has low sensitivity in detecting such hypoperfusion. In this study the authors sought to explore the limitations of MNSSEP monitoring compared to tibial nerve somatosensory evoked potential (TNSSEP) monitoring for the detection of CC-related hypoperfusion. METHODS The authors retrospectively analyzed data from patients who underwent unilateral CEA with routine shunt use. All patients underwent preoperative magnetic resonance angiography and were monitored for intraoperative cerebral ischemia by using MNSSEP, TNSSEP, and carotid stump pressure during CC. First, the frequency of MNSSEP and TNSSEP changes during CC were analyzed. Subsequently, variables related to stump pressure were determined by using linear analysis and those related to each of the somatosensory evoked potential (SSEP) changes were determined by using logistic regression analysis. RESULTS A total of 94 patients (mean age 74 years) were included in the study. TNSSEP identified a greater number of SSEP changes during CC than MNSSEP (20.2% vs 11.7%; p < 0.05). Linear regression analysis demonstrated that hypoplasia of the contralateral proximal segment of the anterior cerebral artery (A hypoplasia) (p < 0.01) and hypoplasia of the ipsilateral precommunicating segment of the posterior cerebral artery (P hypoplasia) (p = 0.02) independently and negatively correlated with stump pressure. Both contralateral A hypoplasia (OR 26.25, 95% CI 4.52-152.51) and ipsilateral P hypoplasia (OR 8.75, 95% CI 1.83-41.94) were independently related to the TNSSEP changes. However, only ipsilateral P hypoplasia (OR 8.76, 95% CI 1.61-47.67) was independently related to MNSSEP changes. CONCLUSIONS TNSSEP monitoring appears to be superior to MNSSEP in detecting CC-related hypoperfusion. Correlation with stump pressure and SSEP changes indicates that TNSSEP, and not MNSSEP monitoring, is a reliable indicator of cerebral ischemia in the territory of the anterior cerebral artery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.