The bactericidal activity of heated bio-shell calcium oxide BiSCaO powder suspension pH 12.4 , hypochlorous acid HClO; pH 6 , sodium hypochlorite NaClO; pH 8 , povidone-iodine Isodine solution ® , and chlorhexidine gluconate Hibiscrub ® under organic matter contaminated environments were compared for tests conducted on wood scraps and pig skin pieces that were incubated with normal bacterial flora total viable counts and coliform bacteria. The test results showed that BiSCaO suspension had higher bactericidal activity than HClO and NaClO. Furthermore, more than 10-fold higher concentrations of antiseptics such as povidone-iodine and chlorhexidine gluconate were required to achieve bactericidal activity comparable to that of BiSCaO suspension. Our results demonstrate the possibility of using BiSCaO suspension under organic matter contaminated environments as a disinfectant for environmental and food hygiene applications.
Scallop-shell powder (SSP) heated at high temperature exhibits high pH and broad antimicrobial activity. Bioshell calcium oxide (BiSCaO) is an SSP composed mainly of calcium oxide. It is poorly water-soluble under alkaline conditions and the generated precipitate can plug spray nozzles. The aim of this study was to establish that BiSCaO dispersion caused no significant CaO loss and plugging of spray nozzles, and to evaluate its deodorization and microbicidal abilities and its ability to reduce the concentrations of NO2− and NO3−. BiSCaO dispersions were prepared by mixing various concentrations of BiSCaO suspension, while phosphate compounds such as Na3PO4, Na2HPO4 or NaH2PO4 and the pH, average diameter, zeta potential, and form of the compounds with cryo-SEM were evaluated. We evaluated deodorization using tainted pork meat and microbicidal efficacy using contaminated suspension with normal bacterial flora. The concentration of NO2− and NO3− after mixing BiSCaO dispersion and pure water containing a high proportion of NO2− and NO3− were measured. BiSCaO dispersion formed with Na2HPO4, whose ratio to BiSCaO was 60%, showed a high pH (>12), a small particle diameter (>181 nm) and was stable for seven days. The BiSCaO dispersion showed higher deodorization and microbicidal activities than SSP-Ca(OH)2, which was mainly composed of Ca(OH)2. BiSCaO, but not SSP-Ca(OH)2, could reduce the concentration of NO2− and NO3− by more than 90% within 15 min. We developed a stable BiSCaO dispersion, and it had high deodorization and microbicidal efficacy. These activities of BiSCaO might result from the high pH caused by CaO hydration and a reduction activity causing active radical species.
Bioshell calcium oxide (BiSCaO) is a scallop-shell powder heated at a high temperature. BiSCaO is composed mainly of calcium oxide and exhibits broad microbicidal properties. The aim of this study is to evaluate the disinfection and decontamination abilities of BiSCaO colloidal dispersions with that of commercially available bioshell calcium hydroxide (BiSCa(OH)2) following the formation of flocculants/precipitates under strongly alkaline conditions (pH 11.5–12.2). Various concentrations of BiSCaO and BiSCa(OH)2 colloidal dispersions were prepared by mixing with Na-polyPO4 (PP) and Na-triPO4 (TP) as flocculating agents. The microbicidal activities, and the degree of flocculation/precipitation of trypan blue, albumin, chondroitin sulfate, heparin, non-anticoagulant heparin carrying polystyrene (NAC-HCPS), and low-molecular-weight heparin/protamine nanoparticles (LMWH/P NPs) were dependent on the pH, the average particle diameter, and the concentration of BiSCaO or BiSCa(OH)2 and of the phosphate compound. BiSCaO (average particle diameter: 6 μm) colloidal dispersions (0.2 wt.%) containing 0.15 wt.% PP or TP exhibited substantially stronger microbicidal activity and flocculation/precipitation under strongly alkaline conditions. These results suggest that BiSCaO colloidal dispersions together with phosphate compounds have practical applicability for disinfection.
Immediately post-production, commercially available bioshell calcium oxide (BiSCaO) water is colorless, transparent, and strongly alkaline (pH 12.8), and is known to possess deodorizing properties and broad microbicidal activity. However, BiSCaO Water may represent a serious safety risk to the living body, given the strong alkalinity. This study aimed to investigate the safety of BiSCaO Water for use as an antiseptic/disinfectant despite concerns regarding its high alkalinity. The change over time in pH of BiSCaO Water was measured during air contact (stirring BiSCaO Water in ambient air). When sprayed on metal, plastic, wood piece, paper, and skin surfaces, the pH of BiSCaO Water decreased rapidly, providing a white powder coating upon drying. Scanning electron microscopy images, energy dispersive X-ray elemental mapping, and X-ray diffractograms showed that the dried powder residues of BiSCaO Water were composed primarily of calcium carbonate. These results suggested that BiSCaO Water is a potent reagent that may overcome the obstacles of being strongly alkaline, making this material appropriate for use in disinfection against pathogenic microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.