Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2−•, and OH• active species dominate the photodegradation of methyl orange.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2578-2) contains supplementary material, which is available to authorized users.
Ultrafast pump probe reflectivity (PPR) signal near band edge is modeled by taking into account band filling (BF) and band gap renormalization (BGR) effects with the carrier density of ~1017/cm3 in GaAs crystal at room temperature. The calculated results indicate that the transient reflectivity ΔR/R is determined by BF and BGR effects. The most interesting feature is that ΔR/R signal experiences a sign change from photo-bleaching (PB) to photo-absorption (PA) due to the competition between BF and BGR effects. We experimentally measured ΔR as a function of photon energy across band edge with carrier density of ~1017/cm3 in GaAs and CdTe crystals, which has a similar trend as that calculated according to our model. In addition, the reflectivity is very sensitive to electron spin orientation, which is well confirmed by the corresponding experiments with 100 fs pump probe reflectivity spectroscopy in bulk CdTe. Our research in this work provides a method to study optoelectronic properties of conventional semiconductors at moderate carrier density excited by ultrafast laser pulse. Importantly, this model can be used for other novel semiconductor materials beyond GaAs and will provide new insights into the underlying spin dependent photophysics properties for new materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.