A wireless ultrasound surgical system (WUSS) with battery modules requires efficient power consumption with appropriate cutting effects during surgical operations. Effective cutting performances of the ultrasound transducer (UT) should be produced for ultrasound surgical knives for effective hemostasis performance and efficient dissection time. Therefore, we implemented a custom-made UT with piezoelectric material and re-poling process, which is applied to enhance the battery power consumption and output amplitude performances of the WUSS. After the re-poling process of the UT, the quality factor increased from 1231.1 to 2418 to minimize the unwanted heat generation. To support this UT, we also developed a custom-made generator with a transformer and developed 2nd harmonic termination circuit, control microcontroller with an advanced reduced instruction set computer machine (ARM) controller, and battery management system modules to produce effective WUSS performances. The generator with a matching circuit in the WUSS showed a peak-to-peak output voltage and current amplitude of 166 V and 1.12 A, respectively, at the resonant frequency. The performance with non-contact optical vibrators was also measured. In the experimental data, the developed WUSS reduced power consumption by 3.6% and increased the amplitude by 20% compared to those of the commercial WUSS. Therefore, the improved WUSS performances could be beneficial for hemostatic performance and dissection time during surgical operation because of the developed UT with a piezoelectric material and re-poling process.
Our developed wire ultrasound surgical instrument comprises a bolt-clamped Langevin ultrasonic transducer (BLUT) fabricated by PMN-PZT single crystal material due to high mechanical quality factor and electromechanical coupling coefficient, a waveguide in the handheld instrument, and a generator instrument. To ensure high performance of wire ultrasound surgical instruments, the BLUT should vibrate at an accurate frequency because the BLUT’s frequency influences hemostasis and the effects of incisions on blood vessels and tissues. Therefore, we implemented a BLUT with a waveguide in the handheld instrument using a developed assembly jig process with impedance and network analyzers that can accurately control the compression force using a digital torque wrench. A generator instrument having a main control circuit with a low error rate, that is, an output frequency error rate within ±0.5% and an output voltage error rate within ±1.6%, was developed to generate the accurate frequency of the BLUT in the handheld instrument. In addition, a matching circuit between the BLUT and generator instrument with a network analyzer was developed to transfer displacement vibration efficiently from the handheld instrument to the end of the waveguide. Using the matching circuit, the measured S-parameter value of the generator instrument using a network analyzer was −24.3 dB at the resonant frequency. Thus, our proposed scheme can improve the vibration amplitude and accuracy of frequency control of the wire ultrasound surgical instrument due to developed PMN-PZT material and assembly jig process.
When the number of lens groups is large, the zoom locus becomes complicated and thus cannot be determined by analytical means. By the conventional calculation method, it is possible to calculate the zoom locus only when a specific lens group is fixed or the number of lens groups is small. To solve this problem, we employed the Padé approximation to find the locus of each group of zoom lenses as an analytic form of a rational function consisting of the ratio of polynomials, programmed in MATLAB. The Padé approximation is obtained from the initial data of the locus of each lens group. Subsequently, we verify that the obtained locus of lens groups satisfies the effective focal length (EFL) and the back focal length (BFL). Afterwards, the Padé approximation was applied again to confirm that the error of BFL is within the depth of focus for all zoom positions. In this way, the zoom locus for each lens group of the optical system with many moving lens groups was obtained as an analytical rational function. The practicality of this method was verified by application to a complicated zoom lens system with five or more lens groups using preset patents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.