Objectives To evaluate the effect of pre-scan blood glucose levels (BGL) on standardized uptake value (SUV) in 18 F-FDG-PET scan. Methods A literature review was performed in the MEDLINE, Embase, and Cochrane library databases. Multivariate regression analysis was performed on individual datum to investigate the correlation of BGL with SUV max and SUV mean adjusting for sex, age, body mass index (BMI), diabetes mellitus diagnosis, 18 F-FDG injected dose, and time interval. The ANOVA test was done to evaluate differences in SUV max or SUV mean among five different BGL groups (< 110, 110-125, 125-150, 150-200, and > 200 mg/dl). Results Individual data for a total of 20,807 SUV max and SUV mean measurements from 29 studies with 8380 patients was included in the analysis. Increased BGL is significantly correlated with decreased SUV max and SUV mean in brain (p < 0.001, p < 0.001,) and muscle (p < 0.001, p < 0.001) and increased SUV max and SUV mean in liver (p = 0.001, p = 0004) and blood pool (p = 0.008, p < 0.001). No significant correlation was found between BGL and SUV max or SUV mean in tumors. In the ANOVA test, all hyperglycemic groups had significantly lower SUVs compared with the euglycemic group in brain and muscle, and significantly higher SUVs in liver and blood pool. However, in tumors only the hyperglycemic group with BGL of > 200 mg/dl had significantly lower SUV max. Conclusion If BGL is lower than 200 mg/dl no interventions are needed for lowering BGL, unless the liver is the organ of interest. Future studies are needed to evaluate sensitivity and specificity of FDG-PET scan in diagnosis of malignant lesions in hyperglycemia.
Nanolipoprotein particles (NLPs) are nanometer-scale discoidal particles that feature a phospholipid bilayer confined within an apolipoprotein "scaffold," which are useful for solubilizing hydrophobic molecules such as drugs and membrane proteins. NLPs are synthesized either by mixing the purified apolipoprotein with phospholipids and other cofactors or by cell-free protein synthesis followed by self-assembly of the nanoparticles in the reaction mixture. Either method can be problematic regarding the production of homogeneous and monodispersed populations of NLPs, which also currently requires multiple synthesis and purification steps. Telodendrimers (TD) are branched polymers made up of a dendritic oligo-lysine core that is conjugated to linear polyethylene glycol (PEG) on one end, and the lysine "branches" are terminated with cholic acid moieties that enable the formation of nanomicelles in aqueous solution. We report herein that the addition of TD during cell-free synthesis of NLPs produces unique hybrid nanoparticles that have drastically reduced polydispersity as compared to NLPs made in the absence of TD. This finding was supported by dynamic light scattering, fluorescence correlation spectroscopy, and cryo transmission electron microscopy (Cryo-EM). These techniques demonstrate the ability of TDs to modulate both the NLP size (6-30 nm) and polydispersity. The telodendrimer NLPs (TD-NLPs) also showed 80% less aggregation as compared to NLPs alone. Furthermore, the versatility of these novel nanoparticles was shown through direct conjugation of small molecules such as fluorescent dyes directly to the TD as well as the insertion of a functional membrane protein.
We identified patients with pleural-based histologically confirmed sarcomatoid or biphasic mesothelioma (International Classification of Diseases for Oncology, 3rd edition, code C38.4, morphology codes 9051 [fibrous/ sarcomatoid] or 9053 [biphasic]) in the National Cancer Database (NCDB) diagnosed between 2004 and 2013. Approximately 70% of all newly diagnosed cancer cases in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.