In this paper, we consider the problem of feedback controller design via eigenvalue assignment for linear time-invariant systems of linear delay differential equations (DDEs) with a single delay. Unlike ordinary differential equations (ODEs), DDEs have an infinite eigenspectrum, and it is not feasible to assign all closed-loop eigenvalues. However, we can assign a critical subset of them using a solution to linear systems of DDEs in terms of the matrix Lambert W function. The solution has an analytical form expressed in terms of the parameters of the DDE, and is similar to the state transition matrix in linear ODEs. Hence, one can extend controller design methods developed based upon the solution form of systems of ODEs to systems of DDEs, including the design of feedback controllers via eigenvalue assignment. We present such an approach here, illustrate it using some examples, and compare with other existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.