We demonstrate a man-made lighting device of organic light-emitting diode (OLED) capable of yielding a sunlight-style illumination with various daylight chromaticities, whose color temperature ranges between 2300 and 8200 K, fully covering those of the entire daylight at different times and regions. The OLED employs a device architecture capable of simultaneously generating all the emissions required to form a series of daylight chromaticities. The wide color-temperature span may be attributed to that the recombination core therein can easily be shifted along the different emissive zones simply by varying the applied voltage via the use of a thin carrier-modulating layer.
Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging. The depth profile of the fragment distribution that reflects the molecular distribution is achieved by low energy Cs(+) ion sputtering. The depth profile clearly shows a vertical phase separation of P3HT:PCBM before annealing, and hence, the inverted device architecture is beneficial. After annealing, the phase segregation is suppressed, and the device efficiency is dramatically enhanced with a normal device structure. The 3D image is obtained by stacking the 2D ToF-SIMS images acquired at different sputtering times, and 50 nm features are clearly differentiated. The whole imaging process requires less than 2 h, making it both rapid and versatile.
Abundant molecules enable countless combinations of device architecture that might achieve the desirable high efficiency from organic light-emitting diodes (OLEDs). Due to the relatively high cost of OLED materials and facilities, simulation approaches have become a must in further advancing the field faster and saver. We have demonstrated here the use of state-of-art simulation approaches to investigate the effect of molecular orbital energy levels on the recombination of excitons in OLED devices. The devices studied are composed of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) as hole transporting material (HTM), 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl (CBP) as host, 2,2',2”-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) or bathophenanthroline (Bphen) as electron transporting materials. The outcomes reveal that exciton recombination highly sensitive to the energy-level alignment, injection barriers, and charge mobilities. A low energy-barrier (<0.4 eV) between the layers is the key to yield high recombination. The lowest unoccupied molecular orbital (LUMO) levels of the organic layers have played a more pivotal role in governing the recombination dynamics than the highest occupied molecular orbital (HOMO) level do. Furthermore, the Bphen based device shows high exciton recombination across the emissive layer, which is >106 times greater than that in the TPBi based device. The high carrier mobility of Bphen whose electron mobility is 5.2 × 10−4 cm2 V−1 s−1 may lead to low charge accumulation and hence high exciton dynamics. The current study has successfully projected an in-depth analysis on the suitable energy-level alignments, which would further help to streamline future endeavours in developing efficient organic compounds and designing devices with superior performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.