The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5′-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.
BackgroundComputational models of RNA 3D structure often present various inaccuracies caused by simplifications used in structure prediction methods, such as template-based modeling or coarse-grained simulations. To obtain a high-quality model, the preliminary RNA structural model needs to be refined, taking into account atomic interactions. The goal of the refinement is not only to improve the local quality of the model but to bring it globally closer to the true structure.ResultsWe present QRNAS, a software tool for fine-grained refinement of nucleic acid structures, which is an extension of the AMBER simulation method with additional restraints. QRNAS is capable of handling RNA, DNA, chimeras, and hybrids thereof, and enables modeling of nucleic acids containing modified residues.ConclusionsWe demonstrate the ability of QRNAS to improve the quality of models generated with different methods. QRNAS was able to improve MolProbity scores of NMR structures, as well as of computational models generated in the course of the RNA-Puzzles experiment. The overall geometry improvement may be associated with increased model accuracy, especially on the level of correctly modeled base-pairs, but the systematic improvement of root mean square deviation to the reference structure should not be expected. The method has been integrated into a computational modeling workflow, enabling improved RNA 3D structure prediction.
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein–RNA interfaces to probe the binding hot spots at protein–RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein–protein and protein–RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein–RNA recognition sites with desired affinity.
We present an updated version of the protein-RNA docking benchmark, which we first published four years back. The non-redundant protein-RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound-unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound-bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound-unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid-body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid-body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein-RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2. Proteins 2017; 85:256-267. © 2016 Wiley Periodicals, Inc.
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.