Kematian yang disebabkan penyakit jantung masih sangat tinggi, sehingga perlu peningkatan upaya-upaya pencegahannya, misalnya dengan meningkatkan capaian model prediksinya. Penerapan metode-metode machine learning pada dataset publik (Cleveland, Hungary, Switzerland, VA Long Beach, & Statlog) yang umumnya digunakan oleh para peneliti untuk prediksi penyakit jantung, termasuk pengembangan alat bantunya, masih belum menangani missing value, noisy data, unbalanced class, dan bahkan data validation secara efisien. Oleh karena itu, pendekatan imputasi mean/mode diusulkan untuk menangani missing value replacement, Min-Max Normalization untuk menangani smoothing noisy data, K-Fold Cross Validation untuk menangani data validation, dan pendekatan ensemble menggunakan metode Weighted Vote (WV) yang dapat menyatukan kinerja tiap-tiap metode machine learning untuk mengambil keputusan klasifikasi sekaligus untuk mereduksi unbalanced class. Hasil penelitian ini menunjukkan bahwa metode yang diusulkan tersebut memberikan akurasi sebesar 85,21%, sehingga mampu meningkatkan kinerja akurasi metode-metode machine learning, selisih 7,14% dengan Artificial Neural Network, 2,77% dengan Support Vector Machine, 0,34% dengan C4.5, 2,94% dengan Naïve Bayes, dan 3,95% dengan k-Nearest Neighbor.
One of the staple foods for most Indonesians is rice. Rice is one of the staple foods most consumed by the people of Indonesia, the need for rice is also increasing, considering the very large and scattered population of Indonesia. The ups and downs of rice prices also have an impact on farmers because of their large production. The solution to dealing with uncertain changes in the retail price of rice is to predict prices. One way to find out the estimated retail price of rice is to make predictions using the Support Vector Machine algorithm using Chi Square. The results of the experiments that have been carried out, the prediction of rice prices has been successfully carried out. The smallest error rate in the Support Vector Machine algorithm model is RMSE 733,061. Then the proposed model approaches the value of perfection, because the comparison of the experimental results of rice price predictions produces an average accuracy value of 95.82%. Thus, the proposed method is declared successful.
The importance of the availability of blood at PMI, it is expected that PMI always maintains the amount of blood supply to meet the need for blood transfusions. Prediction of blood supply is needed to overcome problems related to bloodstock supply at PMI Gorontalo. The application of predicting the number of blood requests with the K-Nearest Neighbor Algorithm can be done to overcome the existing problems. K-NN is a non-parametric algorithm that can be used for classification and regression. The last few decades have been used in prediction cases, but the K-NN algorithm is better if feature selection is applied in selecting features that are not relevant to the model, the feature selection used in this study is Backward Selection. This study aims to determine the error value in predicting the number of requests for blood at the PMI in Gorontalo City. Meanwhile, the purpose of this research is to find the error value of the K-Nearest Neighbor Algorithm and Feature Selection which can be used as a reference for PMI in making policies to make various efforts to maintainbloodstockk in the future.
Tanaman cabai merah merupakan komoditas holtikultura yang begitu sangat penting bagi kebutuhan dan keperluan manusia, seperti, ramuan obat-obatan tradisional, sebagai bumbu untuk makanan, dimakan bersama makanan ringan dan lain-lain. Dilihat dari tingkat serangan dan kondisi pertanian cabai merah di lapangan saat ini masi terkendala dengan belum adanya rekomendasi metode pengendalian yang efektif sehingga petani cenderung menggunakan pastisida kimia yang berdampak negatif terhadap lingkugan. Untuk mendiagnosa berbagai jenis penyakit yang menyerang tanaman cabai merah diperlukan seorang pakar/ahli. Pada peniltian ini akan membangun sebuah aplikasi yang dapat mendiagnosa dan memberikan solusi kepada petani mengenai masalah penyakit tanaman cabai merah. Aplikasi sistem pakar diagnosa penyakit tanaman cabai dapat diimplementasikan dengan melihat hasil pengujian berdasarkan konsultasi diagnosis serta solusi yang diberikan. Hal ini dapat dilihat pada jenis penyakit Busuk Akar dengan gejala kasus G01, G02 nilai Bobot 3.1, Gejala Dipilih (Benar) dan Nilai Kedekatan K-NN (3/4) = 0.75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.