Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.