Abstract:In this present work, the authors introduce two subclasses of biunivalent functions using linear and Salagean operator and the coefficient estimates is obtained for |a 2 | and |a 3 | for these subclasses of functions.
Recently, the q−derivative operator has been used to investigate several subclasses of analytic functions in different ways with different perspectives by many researchers and their interesting results are too voluminous to discuss. For example, the extension of the theory of univalent functions can be used to describe the theory of q−calculus, q−calculus operator are also used to construct several subclasses of analytic functions and so on. In this work, we considered the Fekete-Szego problem for certain analytic functions defined by q−derivative operator with respect to symmetric and conjugate points. The early few coefficient bounds were obtained to derive our results.
Gegenbauer polynomials constitute a numerical tool that has attracted the interest of many function theorists in recent times mainly due to their real-life applications in many areas of the sciences and engineering. Their applications in geometric function theory (GFT) have also been considered by many researchers. In this paper, this powerful tool is associated with the prolific concepts of convolution and subordination. The main purpose of the research contained in this paper is to introduce and study a new subclass of analytic functions. This subclass is presented using an operator defined as the convolution of the generalized distribution and the error function and applying the principle of subordination. Investigations into this subclass are considered in connection to Carathéodory functions, the modified sigmoid function and Bell numbers to obtain coefficient estimates for the contained functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.