We present a variational framework for deinterlacing that was originally used for inpainting and subsequently redeveloped for deinterlacing. From the framework, we derive a motion adaptive (MA) deinterlacer and a motion compensated (MC) deinterlacer and test them together with a selection of known deinterlacers. To illustrate the need for MC deinterlacing, the problem of details in motion (DIM) is introduced. It cannot be solved by MA deinterlacers or any simpler deinterlacers but only by MC deinterlacers. The major problem in MC deinterlacing is computing reliable optical flow [motion estimation (ME)] in interlaced video. We discuss a number of strategies for computing optical flows on interlaced video hoping to shed some light on this problem. We produce results on challenging real world video data with our variational MC deinterlacer that in most cases are indistinguishable from the ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.