Learning and memory have been closely linked to strengthening of synaptic connections between neurons (i.e., synaptic plasticity) within the dentate gyrus (DG)-CA3-CA1 trisynaptic circuit of the hippocampus. Conspicuously absent from this circuit is area CA2, an intervening hippocampal region that is poorly understood. Schaffer collateral synapses on CA2 neurons are distinct from those on other hippocampal neurons in that they exhibit a perplexing lack of synaptic long-term potentiation (LTP). Here we demonstrate that the signaling protein RGS14 is highly enriched in CA2 pyramidal neurons and plays a role in suppression of both synaptic plasticity at these synapses and hippocampal-based learning and memory. RGS14 is a scaffolding protein that integrates G protein and H-Ras/ ERK/MAP kinase signaling pathways, thereby making it well positioned to suppress plasticity in CA2 neurons. Supporting this idea, deletion of exons 2-7 of the RGS14 gene yields mice that lack RGS14 (RGS14-KO) and now express robust LTP at glutamatergic synapses in CA2 neurons with no impact on synaptic plasticity in CA1 neurons. Treatment of RGS14-deficient CA2 neurons with a specific MEK inhibitor blocked this LTP, suggesting a role for ERK/MAP kinase signaling pathways in this process. When tested behaviorally, RGS14-KO mice exhibited marked enhancement in spatial learning and in object recognition memory compared with their wild-type littermates, but showed no differences in their performance on tests of nonhippocampal-dependent behaviors. These results demonstrate that RGS14 is a key regulator of signaling pathways linking synaptic plasticity in CA2 pyramidal neurons to hippocampal-based learning and memory but distinct from the canonical DG-CA3-CA1 circuit.long-term potentiation | hippocampus | G protein signaling | RGS proteins | ERK
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate G␣ signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G q/11 -coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G i/o -coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G q ␣ and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G 11 ␣ in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.Cells rely upon G protein-coupled receptors (GPCRs) 1 to convey signals from extracellular hormones and neurotransmitters to intracellular effectors and linked signaling pathways. Agonist occupancy of the GPCR activates a heterotrimeric G protein (G␣␥) by catalyzing the exchange of GDP for GTP on the G␣ subunit (1). This initiates dissociation of the trimer into free G␣ and G␥, which independently or in coordinated fashion activate downstream effectors and linked signaling pathways. Members of the regulators of G protein signaling (RGS) family of proteins are direct modulators of G protein activity. RGS proteins are best understood as GTPaseactivating proteins (GAPs), which bind to the activated form of G␣ and accelerate its GTPase activity thereby promoting the termination of G protein signaling (2-5). By virtue of their interactions with activated G␣, RGS proteins also serve as effector antagonists to block activation of downstream effector molecules (6, 7).All RGS proteins share a conserved RGS core domain of ϳ130 amino acids that contains binding sites for G␣ and is responsible for their GAP activity (5,8,9). Outside of the RGS domain, however, the more than 30 family members are widely divergent. Some RGS proteins are quite complex and contain multiple domains for binding a variety of signaling proteins. Other RGS proteins are simple, with relatively short, featureless N...
MAPkinase signalling is essential for cell growth, differentiation and cell physiology. G proteins and tyrosine kinase receptors each modulate MAPkinase signalling through distinct pathways. We report here that RGS14 is an integrator of G protein and MAPKinase signalling pathways. RGS14 contains a GPR/GoLoco (GL) domain that forms a stable complex with inactive Giα1/3-GDP, and a tandem (R1, R2) Ras binding domain (RBD). We find that RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells. Activated H-Ras binds RGS14 at the R1 RBD to form a stable complex at cell membranes. RGS14 also co-localizes with and forms a complex with Raf kinases in cells. The regulatory region of Raf-1 binds the RBD region of RGS14, and H-Ras and Raf each facilitate one another's binding to RGS14. RGS14 selectively inhibits PDGF-, but not EGF-or serum-stimulated Erk phosphorylation. This inhibition is dependent on HRas binding to RGS14 and is reversed by co-expression of Giα1, which binds and recruits RGS14 to the plasma membrane. Giα1 binding to RGS14 inhibits Raf binding, indicating that Giα1 and Raf binding to RGS14 are mutually exclusive. Taken together, these findings indicate that RGS14 is a newly appreciated integrator of G protein and Ras/Raf signalling pathways.
Recent work has demonstrated that some actively transcribed genes closely associate with nuclear pore complexes (NPC) at the nuclear periphery. The Saccharomyces cerevisiae Mlp1 and Mlp2 proteins are components of the inner nuclear basket of the nuclear pore that mediate interactions with these active genes. To investigate the physical link between the NPC and active loci, we identified proteins that interact with the carboxyl-terminal globular domain of Mlp1 by tandem affinity purification coupled with mass spectrometry. This analysis led to the identification of several components of the Spt-Ada-Gcn5-acetyltransferase (SAGA) histone acetyltransferase complex, Gcn5, Ada2, and Spt7. We utilized co-immunoprecipitation and in vitro binding assays to confirm the interaction between the Mlp proteins and SAGA components. Chromatin immunoprecipitation experiments revealed that Mlp1 and SAGA components associate with the same region of the GAL promoters. Critically, this Mlp-promoter interaction depends on the integrity of the SAGA complex. These results identify a physical association between SAGA and the NPC, and support previous results that relied upon visualization of GAL loci at the nuclear periphery by microscopy (Cabal, G. G. Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach-Fournier, F., Olivo-Marin, J.-C., Hurt, E. C., and Nehrbass, U. (2006) Nature 441, 770 -773). We propose that a physical interaction between nuclear pore components and the SAGA complex can link the actively transcribed GAL genes to the nuclear pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.