Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the VH–VL sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10−4 M−1·s−1 and 6.29 × 10−3 s−1, respectively, with an affinity value exceeding 107 M−1 (kon/koff), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor.
In a previous study, we elucidated the apoptotic mechanism mediated via Fas/FasL-dependent pathway in mitomycin C-treated cervical carcinoma cells. In this study, 2-D and MALDI-TOF analyses were performed in order to search mitomycin C-induced modulators in cervical carcinoma cells. Some protein spots down- or up-regulated by mitomycin C were separately selected from the 2-D gels. Twenty protein spots were identified from the 2-D gels. Among the 20 spots, 11 spots were down-regulated, whereas 9 spots were up-regulated in SiHa/pRSV-luc cells by mitomycin C. Three spots have not been identified in the database. Ku70-binding protein (KUB3), MHC class I antigen, MHC class I chain-related protein A or multi-PDZ domain protein 1, MAGUK P55 subfamily member 3 or lamda/iota protein kinase C-interacting protein, and GL014 or Sad1/unc-84 protein-like 1 were suppressed by mitomycin C treatment. Heat shock 60 kDa protein 1 (chaperonin), similar to heat shock protein 90 kDa protein alpha or nine in centrosomal protein isoform C, NADP-dependent malic enzyme, mitochondrial precursor, GRB10 adaptor protein, glycogenin-interacting protein 1, cystathionine gamma-lyase, G2/mitotic-specific cyclin B2 or heat shock 90 kDa protein 1 alpha, peptidyl-prolyl cis-trans isomerase B, and PARP-2 (fragment) were induced by mitomycin C. KUB3, Brca1, and E6 gene expressions were down-regulated by mitomycin C in HPV-positive cervical cancer cells, SiHa/pRSV-luc and SiHa. In these studies, we suggest that MMC down-regulated the expression levels of the upstream molecules of DNA-double strand break repair system, non-homologous end joining or homologous recombination, resulting in the suppression of cervical cancer cell growth.
A novel maltose-forming α-amylase (PSMA) was recently found in the hyperthermophilic archaeon Pyrococcus sp. ST04. This enzyme shows <13% amino-acid sequence identity to other known α-amylases and displays a unique enzymatic property in that it hydrolyzes both α-1,4-glucosidic and α-1,6-glucosidic linkages of substrates, recognizing only maltose units, in an exo-type manner. Here, the crystal structure of PSMA at a resolution of 1.8 Å is reported, showing a tight ring-shaped tetramer with monomers composed of two domains: an N-domain (amino acids 1-341) with a typical GH57 family (β/α)7-barrel fold and a C-domain (amino acids 342-597) composed of α-helical bundles. A small closed cavity observed in proximity to the catalytic residues Glu153 and Asp253 at the domain interface has the appropriate volume and geometry to bind a maltose unit, accounting for the selective exo-type maltose hydrolysis of the enzyme. A narrow gate at the putative subsite +1 formed by residue Phe218 and Phe452 is essential for specific cleavage of glucosidic bonds. The closed cavity at the active site is connected to a short substrate-binding channel that extends to the central hole of the tetramer, exhibiting a geometry that is significantly different from classical maltogenic amylases or β-amylases. The structural features of this novel exo-type maltose-forming α-amylase provide a molecular basis for its unique enzymatic characteristics and for its potential use in industrial applications and protein engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.