Pleasant touching is an important aspect of social interactions that is widely used as a caregiving technique. To address the problems resulting from a lack of available human caregivers, previous research has attempted to develop robots that can perform this kind of pleasant touch. However, it remains unclear whether robots can provide such a pleasant touch in a manner similar to humans. To investigate this issue, we compared the effect of the speed of gentle strokes on the back between human and robot agents on the emotional responses of human participants (n = 28). A robot or a human stroked on the participants’ back at two different speeds (i.e., 2.6 and 8.5 cm/s). The participants’ subjective (valence and arousal ratings) and physiological (facial electromyography (EMG) recorded from the corrugator supercilii and zygomatic major muscles and skin conductance response) emotional reactions were measured. The subjective ratings demonstrated that the speed of 8.5 cm/s was more pleasant and arousing than the speed of 2.6 cm/s for both human and robot strokes. The corrugator supercilii EMG showed that the speed of 8.5 cm/s resulted in reduced activity in response to both human and robot strokes. These results demonstrate similar speed-dependent modulations of stroke on subjective and physiological positive emotional responses across human and robot agents and suggest that robots can provide a pleasant touch similar to that of humans.
Many kinds of lower-limb exoskeletons were developed for walking assistance. However, when controlling these exoskeletons, time-delay due to the computation time and the communication delays is still a general problem. In this research, we propose a novel method to prevent the time-delay when controlling a walking assist exoskeleton by predicting the future plantar force and walking status. By using Long Short-Term Memory and a fully-connected network, the plantar force can be predicted using only data measured by inertial measurement unit sensors, not only during the walking period but also at the start and end of walking. From the predicted plantar force, the walking status and the desired assistance timing can also be determined. By considering the time-delay and sending the control commands beforehand, the exoskeleton can be moved precisely on the desired assistance timing. In experiments, the prediction accuracy of the plantar force and the assistance timing are confirmed. The performance of the proposed method is also evaluated by using the trained model to control the exoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.