The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time. The device comprises a transparent pressure-sensing film with a solution-processable cellulose/ nanowire nanohybrid network featuring ultrahigh sensor sensitivity (>5000 kPa −1 ) and a fast response time (<1 ms), and a quantum dot-based electroluminescent film. The two ultrathin films conform to each contact object and transduce spatial pressure into conductivity distribution in a continuous domain, resulting in super-resolution (>1000 dpi) pressure imaging without the need for pixel structures. Our approach provides a new framework for visualizing accurate stimulus distribution with potential applications in skin prosthesis, robotics, and advanced human-machine interfaces.
This study was designed to compare proprioception and postural stability in patients with acute (time from injury ≤ 3 months) and chronic (time from injury > 3 months) ACL tears, and to evaluate the correlation between time interval after ACL injury and proprioception. Thigh muscle strength, postural stability, and joint position sense were compared in 48 patients with acute ACL tears and in 28 with chronic ACL tears. Maximal torque (60°/sec) of the quadriceps and hamstring was evaluated using an isokinetic testing device. Postural stability was determined from the anterior-posterior (APSI), medial-lateral (MLSI), and overall (OSI) stability indices using stabilometry. Joint position sense was also tested by reproduction of passive positioning (RPP). Muscle strengths and stability indices on both the involved and uninvolved sides were similar in the acute and chronic ACL tear groups. RPP on the involved side was significantly greater in the chronic than in the acute ACL tear group (7.8° vs. 5.6°, P = 0.041). Two of three stability indices (APSI, OSI) and RPP were significantly greater on the involved than the uninvolved side in the chronic ACL tear group.
This study suggests that coadministration of P. ginseng and warfarin in ischemic stroke patients does not influence the pharmacologic action of warfarin.
Stoichiometric crystalline binary metal oxide thin films can be used as channel materials for transparent thin film transistors. However, the nature of the process used to fabricate these films causes most binary metal oxide thin films to be highly conductive, making them unsuitable for channel materials. We overcame this hurdle by forming stoichiometric ultra-thin (5 nm) crystalline In2O3 films by using a thermal atomic layer deposition method. Specifically, (3-(dimethylamino)propyl)dimethylindium was used as a liquid precursor and ozone as an oxygen source to grow In2O3 thin films at a high growth rate of 0.06 nm/cycle. Adjustment of the deposition processing temperature followed by annealing in an oxygen atmosphere enabled us to fully crystallize the film into a cubic bixbyite structure with the retained stoichiometry. The transparent crystalline ultra-thin In2O3-based bottom-gate thin film transistors showed excellent and statistically uniform switching characteristics such as a high Ion/Ioff ratio exceeding 107, a high linear mobility of 41.8 cm2/V s, a small subthreshold swing of 100 mV/dec, and a low hysteresis of 0.05 V. Our approach offers a straightforward scheme, which is compatible with oxide electronics, for fabricating a transparent metal oxide device without resorting to complicated oxide compositional strategies.
Chronic kidney disease (CKD) is a common cause of end-stage renal disease. Antihypertensive agents are used clinically to inhibit the progression of CKD, but cannot prevent eventual renal failure. This study investigated the effect of Tanshinone IIA, an active component of Salvia miltiorrhiza, in rats suffering from CKD induced by 5/6 nephrectomy. After development of renal insufficiency, the rats were treated with Tanshinone IIA (10 mg/kg) for 8 weeks. Serum creatinine, angiotensin II (Ang II), transforming growth factor β1 (TGF-β1) and collagen IV levels were significantly reduced in Tanshinone IIA treated rats compared with a control group. In addition, Tanshinone IIA suppressed increases in urinary protein excretion in CKD rats. These findings suggest that chronic oral administration of Tanshinone IIA can improve renal dysfunction associated with CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.