ObjectivesTo evaluate whether botulinum toxin A (BoNT-A) injection and Lipotoxin (liposomes with 200 U of BoNT-A) instillation target different proteins, including P2X3, synaptic vesicle glycoprotein 2A, and SNAP-25, in the bladder mucosa, leading to different treatment outcomes.Materials and MethodsThis was a retrospective study performed in a tertiary teaching hospital. We evaluated the clinical results of 27 OAB patients treated with intravesical BoNT-A injection (n = 16) or Lipotoxin instillation (n = 11). Seven controls were treated with saline. Patients were injected with 100 U of BoNT-A or Lipotoxinin a single intravesical instillation. The patients enrolled in this study all had bladder biopsies performed at baseline and one month after BoNT-A therapy. Treatment outcome was measured by the decreases in urgency and frequency episodes at 1 month. The functional protein expressions in the urothelium were measured at baseline and after 1 month. The Wilcoxon signed-rank test and ordinal logistic regression were used to compare the treatment outcomes.ResultsBoth BoNT-A injection and Lipotoxin instillation treatments effectively decreased the frequency of urgency episodes in OAB patients. Lipotoxin instillation did not increase post-void residual volume. BoNT-A injection effectively cleaved SNAP-25 (p < 0.01). Liposome encapsulated BoNT-A decreased urothelial P2X3 expression in the five responders (p = 0.04), while SNAP-25 was not significantly cleaved.ConclusionsThe results of this study provide a possible mechanism for the therapeutic effects of BoNT-A for the treatment of OAB via different treatment forms. BoNT-A and Lipotoxin treatments effectively decreased the frequency of urgency episodes in patients with OAB.
The perinatal period is critical for β-cell mass establishment, which is characterized by a transient burst in proliferation to increase β-cell mass in response to the need for glucose homeostasis throughout life. In adulthood, the ability of β-cells to grow, proliferate, and expand their mass is also characteristic of pathological states of insulin resistance. Translationally controlled tumor-associated protein (TCTP), an evolutionarily highly conserved protein that is implicated in cell growth and proliferation, has been identified as a novel glucose-regulated survival-supporting protein in pancreatic β-cells. In this study, the enhanced β-cell proliferation detected both during the perinatal developmental period and in insulin-resistant states in high-fat diet-fed mice was found to parallel the expression of TCTP in pancreatic β-cells. Specific knockout of TCTP in β-cells led to increased expression of total and nuclear Forkhead box protein O1 and tumor suppressor protein 53, and decreased expression of p70S6 kinase phosphorylation and cyclin D2 and cyclin-dependent kinase 2. This resulted in decreased β-cell proliferation and growth, reduced β-cell mass, and insulin secretion. Together, these effects led to hyperglycemia. These observations suggest that TCTP is essential for β-cell mass expansion during development and β-cell adaptation in response to insulin resistance.
Translationally controlled tumor-associated protein (TCTP) has been implicated in cell growth, proliferation, and apoptosis through interacting proteins. Although TCTP is expressed abundantly in the mouse brain, little is known regarding its role in the neurogenesis of the nervous system. We used Nestin-cre-driven gene-mutated mice to investigate the function of TCTP in the nervous system. The mice carrying disrupted TCTP in neuronal and glial progenitor cells died at the perinatal stage. The NestinCre/+; TCTPf/f pups displayed reduced body size at postnatal day 0.5 (P0.5) and a lack of milk in the stomach compared with littermate controls. In addition to decreased cell proliferation, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and caspase assay revealed that apoptosis was increased in newly committed TCTP-disrupted cells as they migrated away from the ventricular zone. The mechanism may be that the phenotype from specific deletion of TCTP in neural progenitor cells is correlated with the decreased expression of cyclins D2, E2, Mcl-1, Bcl-xL, hax-1, and Octamer-binding transcription factor 4 (Oct4) in conditional knockout mice. Our results demonstrate that TCTP is a critical protein for cell survival during early neuronal and glial differentiation. Thus, enhanced neuronal loss and functional defect in Tuj1 and doublecortin-positive neurons mediated through increased apoptosis and decreased proliferation during central nervous system (CNS) development may contribute to the perinatal death of TCTP mutant mice.
Treatment with pomalidomide ameliorated the severity of cerulein-induced acute pancreatitis in mice. Our data suggest that pomalidomide may become a new therapeutic agent in future clinical trials for the treatment of acute pancreatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.