It is known that the western United States (US) precipitation displays a north-south contrast, i.e., the so-called "precipitation dipole," during El Niño and La Niña winters. Furthermore, the Pacific Decadal Oscillation (PDO) has been known to modulate this precipitation dipole. However, the underlying physical mechanism regulating this modulation is not well understood. This study revisits previous studies and suggests a physical mechanism of precipitation dipole modulation based on the PDO-storm track relationship. We found that both jet stream and storm track tend to move northward (southward) over the North Pacific during negative (positive) PDO winters, contributing to the increase of precipitation over the northwestern (southwestern) US, respectively. This relationship is robust regardless of El Niño-Southern Oscillation (ENSO), possibly facilitating modulation of the precipitation dipole. Moreover, changes in oceanic baroclinicity associated with the PDO phase are suggested to be responsible for anchorage of storm tracks over the North Pacific.
Mobile monitoring and computational fluid dynamics (CFD) modeling are complementary methods to examine spatio-temporal variations of air pollutant concentrations at high resolutions in urban areas. We measured nitrogen oxides (NO x), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations in a central business district using a mobile laboratory. The analysis of correlations between the measured concentrations and traffic volumes demonstrate that high emitting vehicles (HEVs) are deterministically responsible for poor air quality in the street canyon. The determination coefficient (R 2) with the HEV traffic volume is the largest for the pPAH concentration (0.79). The measured NO x and pPAH concentrations at a signalized intersection are higher than those on a road between two intersections by 24% and 25%, respectively. The CFD modeling results reveal that the signalized intersection plays a role in increasing on-road concentrations due to accelerating and idling vehicles (i.e., emission process), but also plays a countervailing role in decreasing on-road concentrations due to lateral ventilation of emitted pollutants (i.e., dispersion process). It is suggested that the number of HEVs and street-canyon ventilation, especially near a signalized intersection, need to be controlled to mitigate poor air quality in a central business district of a megacity.
In this work, a 2-D gridded air pollution map with a high resolution of 50 × 50 m2 was proposed to help the exposure assessment studies focusing on the association between air pollutants and their health effects. To establish a reliable air pollution map in a 2 × 2 km2 urban area, a mobile monitoring procedure and a data process were developed. Among the various vehicle-related air pollutants, the particle-bound polycyclic aromatic hydrocarbon (pPAH) was chosen as a sensitive indicator. The average pPAH concentration on major roads (293.1 ng/m3) was found to be 35 times higher than that at a background location (8.4 ng/m3). Based on the cell-based pPAH concentrations, the 50 × 50 m2 cells in the air pollution map were categorized into five pollution levels. The higher air pollution levels were generally shown by the cells close to the major traffic emission points. The proposed map can be used to make various policies regarding land use and traffic flow control in urban areas. Estimation of the personal exposure level to air pollutants is possible at a reliable location using the highly resolved 2-D gridded air pollution map in exposure assessment studies.
An investigation of the carbonaceous components of PM 2.5 (D p < 2.5 µm) and PM 0.1 (D p < 0.1 µm) in conjunction with online measurements of gaseous and particulate pollutants, which are dominated by motor vehicle emissions, was undertaken over 15 consecutive days in a field sampling campaign at a roadside and reference site for daytime (06:00 to 17:30) and nighttime (18:00 to 05:30) conditions. The results indicated that traffic-related air pollutants strongly influenced pollution levels in the sampling area, especially during the nighttime, although the concentrations were lower than during the daytime. Water-soluble organic carbon/organic carbon (WSOC/OC) ratios in PM 0.1 were 0.60 ± 0.11 and 0.63 ± 0.16 at the roadside and reference sites, respectively, while the corresponding ratios in PM 2.5 were found to be 0.60 ± 0.11 and 0.63 ± 0.14. These results demonstrated the relatively high contribution of WSOC in the study area compared to in previous reports. It was observed that elemental carbon (EC) in PM 0.1 are emitted approximately by a factor of 0.1 in comparison with those observed for EC in PM 2.5 when considering the slopes of the linear relationship with particle-bound PAHs and NO x , while OC displayed no such relationship. Our measurements indicate that a significant portion of the OC in PM 0.1 is not directly co-emitted with EC from motor vehicles but is readily adsorbed or condensed onto the existing EC fractions through condensation. The relationship between the EC2 fraction and the particle number concentration indicates that the EC2 fraction is the primary chemical component of traffic related ultrafine particles in terms of particle number concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.