Background Cities are a major source of atmospheric CO2; however, understanding the surface CO2 exchange processes that determine the net CO2 flux emitted from each city is challenging owing to the high heterogeneity of urban land use. Therefore, this study investigates the spatiotemporal variations of urban CO2 flux over the Seoul Capital Area, South Korea from 2017 to 2018, using CO2 flux measurements at nine sites with different urban land-use types (baseline, residential, old town residential, commercial, and vegetation areas). Results Annual CO2 flux significantly varied from 1.09 kg C m− 2 year− 1 at the baseline site to 16.28 kg C m− 2 year− 1 at the old town residential site in the Seoul Capital Area. Monthly CO2 flux variations were closely correlated with the vegetation activity (r = − 0.61) at all sites; however, its correlation with building energy usage differed for each land-use type (r = 0.72 at residential sites and r = 0.34 at commercial sites). Diurnal CO2 flux variations were mostly correlated with traffic volume at all sites (r = 0.8); however, its correlation with the floating population was the opposite at residential (r = − 0.44) and commercial (r = 0.80) sites. Additionally, the hourly CO2 flux was highly related to temperature. At the vegetation site, as the temperature exceeded 24 ℃, the sensitivity of CO2 absorption to temperature increased 7.44-fold than that at the previous temperature. Conversely, the CO2 flux of non-vegetation sites increased when the temperature was less than or exceeded the 18 ℃ baseline, being three-times more sensitive to cold temperatures than hot ones. On average, non-vegetation urban sites emitted 0.45 g C m− 2 h− 1 of CO2 throughout the year, regardless of the temperature. Conclusions Our results demonstrated that most urban areas acted as CO2 emission sources in all time zones; however, the CO2 flux characteristics varied extensively based on urban land-use types, even within cities. Therefore, multiple observations from various land-use types are essential for identifying the comprehensive CO2 cycle of each city to develop effective urban CO2 reduction policies.
A melting layer (ML) detection algorithm for cloud radar with polarimetric capability was developed and applied to the cloud radar data collected from five different sites around the world for several years. The retrieved melting layer top height (MLH) showed a very good correspondence with the ECMWF Reanalysis 5 zero degree level data for all five sites. The ML characteristics were distinctively different for different sites, revealing climatological characteristics of ML forming clouds in different regions. Generally, ML tended to occur more frequently in summer than in winter except for a maritime site, where low stratiform clouds formed frequently in summer, the top of which might be lower than the freezing level. In contrast, at two Arctic sites, ML occurred almost exclusively in summer because it was too cold to have an ML in the other seasons. The MLH also varied significantly from site to site but generally was higher during warmer seasons. Based on MLH, two new indices, bulk temperature lapse rate (BLR) and relative depth (RD) of liquid cloud below MLH (RD) were developed, which were useful to explain the environmental characteristics of the five sites. BLR generally increased with the surface temperature at all sites except at the marine site that showed an opposite trend, where a unique synoptic pattern in winter generated high BLR in this cold season. These findings confirm that studies on thermodynamic structures using cloud radars can be broadened, taking advantage of BLR and RD information, as these indices can represent environmental thermodynamic characteristics of the clouds that have ML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.