The genome of tomato (Solanum lycopersicum L.) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States) as part of the larger “International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC) approach to generate a high‐quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN). Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato (Solanum tuberosum L.) sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole‐genome shotgun techniques will be combined with the BAC‐by‐BAC approach to cover the entire tomato genome. The high‐quality reference euchromatic tomato sequence is expected to be near completion by 2010.
Cucumber mosaic virus (CMV) is one of the most destructive viruses in the Solanaceae family. Simple inheritance of CMV resistance in peppers has not previously been documented; all previous studies have reported that resistance to this virus is mediated by several partially dominant and recessive genes. In this study, we showed that the Capsicum annuum cultivar 'Bukang' contains a single dominant resistance gene against CMV(Korean) and CMV(FNY) strains. We named this resistance gene Cmr1 (Cucumber mosaic resistance 1). Analysis of the cellular localization of CMV using a CMV green fluorescent protein construct showed that in 'Bukang,' systemic movement of the virus from the epidermal cell layer to mesophyll cells is inhibited. Genetic mapping and FISH analysis revealed that the Cmr1 gene is located at the centromeric region of LG2, a position syntenic to the ToMV resistance locus (Tm-1) in tomatoes. Three SNP markers were developed by comparative genetic mapping: one intron-based marker using a pepper homolog of Tm-1, and two SNP markers using tomato and pepper BAC sequences mapped near Cmr1. We expect that the SNP markers developed in this study will be useful for developing CMV-resistant cultivars and for fine mapping the Cmr1 gene.
The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.
BackgroundAmong the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato.ResultsFor sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila) were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation.ConclusionsCompared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.