A new type of disposable amperometric sensor is devised by screen printing thick-film electrodes directly on a porous nitrocellulose (NC) strip. The chromatographic NC strip is then utilized to introduce various sample pretreatment layers. As a preliminary application, a glucose biosensor based on hydrogen peroxide detection is constructed by immobilizing glucose oxidase (GOx) on the NC electrode strip and by formulating a strong oxidation layer (i.e., PbO2) at the sample loading area, placed below the GOx reaction band. The screen-printed PbO2 paste serves as a sample pretreatment layer that removes interference by its strong oxidizing ability. Samples applied are carried chromatographically, via the PbO2 paste, to the GOx layer, and glucose is catalyzed to liberate hydrogen peroxide, which is then detected at the electrode surface. The proposed NC/PbO2 strip sensor is shown to be virtually insusceptible to interfering species such as acetaminophen and ascorbic and uric acids and to exhibit good performance, in terms of the sensor-to-sensor reproducibility (standard deviation, +/-0.026 - +/-0.086 microA), the sensitivity (slope, -0.183 microA/mM), and the linearity (correlation coefficient, 0.994 in the range of 0-10 mM).
A planar microchip-based creatinine biosensor employing an oxidizing layer (e.g., a PbO2 film), where interfering redox-active substances are broken (i.e., oxidized) to redox-inactive products, was developed to facilitate the microfabrication of the sensor and to provide improved, reliable determination of creatinine in physiological samples. The feasibility of using hydrophilic polyurethanes in permselective barrier membranes for creatinine biosensors and the effect of adding a silanizing agent (adhesion promoter) on the sensor performance (e.g., sensitivity, stability, and lifetime) are described. The proposed creatinine microsensor with a three-layer configuration, i.e., enzyme, protecting, and oxidizing layers, exhibits good electrochemical performance in terms of response time (t95% = 98 s at 100-->200 microM creatinine change), linearity (1-1000 microM, r = 0.9997), detection limit (0.8 microM), and lifetime (approximately 35 days). The creatinine biosensor devised in a differential sensing arrangement that compensates the erroneous results from creatine is considered to be suitable for assay of serum specimens.
To develop planar microchemical pCO2 sensing devices with improved electrochemical properties, we combined two advanced technologies. One is a differential sensor arrangement to simplify the microfabrication procedure by employing pH-sensitive gas-permeable membranes, and the other is the use of an enzyme (carbonic anhydrase) to shorten total measurement time by accelerating the rate of CO2 hydration. The adhesion of the polyurethane-matrix gas-permeable membrane is enhanced significantly by incorporating a silanizing reagent (silicon tetrachloride), improving the stability and extending sensor lifetime. The proposed differential pCO2 microelectrodes exhibited significantly improved performance in their preconditioning period, response and recovery times, stability, response slope, and lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.