Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.
Biological synthesis of metal nanoparticles has a significant impact in developing sustainable technologies for human, animal, and environmental safety. In this study, we synthesized gold and silver nanoparticles (NPs) using Sedeveria pink ruby (SP) extract and characterized them using UV–visible spectrophotometry, FESEM-EDX, HR-TEM, XRD, and FT-IR spectroscopy. Furthermore, antimicrobial and antioxidant activities and cytotoxicity of the synthesized NPs were evaluated. UV–visible absorption spectra showed λmax at 531 and 410 nm, corresponding to the presence of SP gold NPs (SP-AuNPs) and SP silver NPs (SP-AgNPs). Most NPs were spherical and a few were triangular rods, measuring 5–30 and 10–40 nm, respectively. EDX elemental composition analysis revealed that SP-AuNPs and SP-AgNPs accounted for >60% and 30% of NPs, respectively. Additionally, some organic moieties were present, likely derived from various metabolites in the natural plant extract, which acted as stabilizing and reducing agents. Next, the antimicrobial activity of the NPs against pathogenic microbes was tested. SP-AgNPs showed potent antibacterial activity against Escherichia coli and Yersinia pseudotuberculosis. Moreover, at moderate and low concentrations, both NPs exhibited weak cytotoxicity in chicken fibroblasts (DF-1) and macrophages (HD11) as well as human intestinal cancer cells (HT-29). Meanwhile, at high concentrations, the NPs exhibited strong cytotoxicity in both chicken and human cell lines. Therefore, the synthesized SP-AuNPs and SP-AgNPs may act as promising materials to treat poultry diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.