We present here the development of adaptable hybrid materials in which self-assembling peptides can sense the diameter/curvature of carbon nanotubes and then adjust their overall structures from disordered states to α-helices, and vice versa. The peptides within the hybrid materials show exceptionally high thermal-induced conformational stability and molecular recognition capability for target RNA. This study shows that the context-dependent protein-folding effects can be realized in artificial nanosystems and provides a proof of principle that nanohybrid materials decorated with structured and adjustable peptide units can be fabricated using our strategy, from which smart and responsive organic/inorganic hybrid materials capable of sensing and controlling diverse biological molecular recognition events can be developed.
Here we ask the fundamental questions about the effect of peptide topology on self-assembly. The study revealed that the self-assembling behaviors of cyclic and linear peptides are significantly different in several respects, in addition to sharing several similarities. Their clear differences included the morphological dissimilarities of the self-assembled nanostructures and their thermal stability. The similarities include their analogous critical aggregation concentration values and cytotoxicity profiles, which are in fact closely related. We believe that understanding topology-dependent self-assembly behavior of peptides is important for developing tailor-made self-assembled peptide nanostructures.
A novel strategy to stabilize the α-helical secondary structures of peptides upon binding to gold nanoparticles is described. Using a model protein-protein interaction system, we showed that AuNPs decorated with stabilized p53 α-helix peptides can mediate specific molecular recognition with their target protein.
This study describes a strategy to control the degree of a-helix stabilization and the shape of a-helix-decorated nanostructures. Coassembly of a macrocyclic peptide and a b-sheet peptide diminished steric clashes between helical peptide segments, further stabilizing a-helices.
The self-assembly of peptides enables the construction of self-assembled peptide nanostructures (SPNs) with chemical composition similar to those of natural proteins; however, the structural complexity and functional properties of SPNs are far beneath those of natural proteins. One of the most fundamental challenges in fabricating more elaborate SPNs lies in developing building blocks that are simultaneously more complex and relatively easy to synthesize. Here, the development of self-assembling Janus peptide dendrimers (JPDs) is reported, which have fully 3D structures similar to those of globular proteins. For the reliable and convenient synthesis of JPDs, a solid-phase bifurcation synthesis method is devised. The self-assembly behavior of JPDs is unique because only the dendrimer generation and not the weight fraction dictates the morphology of SPNs. The coassembly of two JPD building blocks provides an opportunity not only to enlarge the morphological repertoire in a predictable manner but also to discover SPNs with unusual and interesting morphologies. Because JPD assemblies have dual multivalency, i.e., supramolecular and unimolecular multivalency, the JPD system enables the statistical selection of materials with high avidity for the desired cell types and possibly any target receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.