A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.
This work is concerned with sequestration of elemental Hg at high temperatures (900-1100• C) on a sorbent that is mineral based, rather than carbon based. This sorbent consists of an intimate mixture of CaO, CaCO 3 , and Al 2 O 3 -2SiO 2 , and is manufactured in industrially relevant quantities (metric tons) from residues produced in paper recycling processes. In contrast to activated carbon (AC), this noncarbon based sorbent has special advantages in that, it can actually enhance fly ash utilization for cement manufacture, rather than diminish it, as is the case for AC.Disperse phase experiments have been conducted, using an externally heated quartz tube reactor, with sorbent feeding rates ranging from 1 to 6 g/h. Preliminary results indicate that Hg removal efficiency is sensitive to sorbent feed rates and to furnace temperature. The Hg removal percentage increased with both these variables. Two mechanisms come into play: an in-flight Hg sorption mechanism, and an Hg sorption mechanism related to sorbent deposits on the reactor wall. A maximum total (in-flight plus deposit-related) Hg removal efficiency of 83-90% was obtained at temperatures of 900-1100• C. There was negligible sorption by either mechanism at temperatures below 600 • C. Results for the in-flight mechanism alone showed a maximum sorption efficiency at ∼900• C, whereas that on the reactor surface increased monotonically with temperature. This suggests that sorbent deactivation can occur in-flight at high temperatures, which is in agreement with other fixed bed results obtained in this laboratory. Deactivation was not apparent for the sorbent-related substance formed on the reactor wall. Raw and spent sorbents were analyzed by X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectrophotometer (SEM-EDS) to identify the sorbent mineral transitions that seem to activate the process. The in-flight mechanisms appear to involve (1) activation of the sorbent, caused most probably by an internal solid-solid reaction, followed by (2) Hg sorption, and (3) possible deactivation, if the temperatures are too high for longer period. Reactor surface mechanisms still remain to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.