This study aimed to fabricate a heterogeneous phantom replicating the commercial Rando phantom by mixing plaster powder and polylactic acid (PLA) powder. Producing a heterogeneous phantom using Plaster and PLA is cheaper because it can be easily obtained in the commercial market. Additionally, patient-specific Quality Assurance can be easily performed because the phantom can be produced based on the patient’s CT image. PLA has been well studied in the field of radiation therapy and was found to be safe and effective. To match the mean Hounsfield unit (HU) values of the Rando phantom, the bone tissue was changed using plaster and 0–35% PLA powder until an appropriate HU value was obtained, and soft tissue was changed using the PLA infill value until an appropriate HU value was obtained. Bone tissue (200 HU or higher), soft issue (− 500 to 200 HU), and air cavity (less than − 500 HU) were modeled based on the HU values on the computed tomography (CT) image. The bone tissue was modeled as a cavity, and after three-dimensional (3D) printing, a solution containing a mixture of plaster and PLA powder was poured. To evaluate the bone implementation of the phantom obtained by the mixture of plaster and PLA powder, the HU profile of the CT images of the 3D-printed phantom using only PLA and the Rando phantom printed using only PLA was evaluated. The mean HU value for soft tissue in the Rando phantom (− 22.5 HU) showed the greatest similarity to the result obtained with an infill value of 82% (− 20 HU). The mean HU value for bone tissue (669 HU) showed the greatest similarity to the value obtained with 15% PLA powder (680 HU). Thus, for the phantom composed of plaster mixed with PLA powder, soft tissue was fabricated using a 3D printer with an infill value of 82%, and bone tissue was fabricated with a mixture containing 15% PLA powder. In the HU profile, this phantom showed a mean difference of 61 HU for soft tissue and 109 HU for bone tissue in comparison with the Rando phantom. The ratio of PLA powder and plaster can be adjusted to achieve an HU value similar to bone tissue. A simple combination of PLA powder and plaster enabled the creation of a custom phantom that showed similarities to the Rando phantom in both soft tissue and bone tissue.
Inspired by adhesive proteins excreted by marine mussels, dopamine can act as a versatile surface modification agent for various organic and inorganic materials. By using adhesive polydopamine (PDA) as an intermediate layer, a simple and novel method for fabricating nickel-PDA-silver (Ni-PDA-Ag) bimetallic composite particles was developed. Ni-PDA-Ag bimetallic particles were fabricated by dispersing Ni particles in an aqueous dopamine solution followed by electroless Ag plating on the prepared Ni-PDA particles. A PDA layer with nano-meter thickness was deposited spontaneously on the surface of the Ni particles by oxidative self-polymerization of dopamine under alkaline conditions. Electroless Ag plating on the prepared Ni-PDA particles was carried out in the presence of a glucose solution as a reducing agent. Ni-PDA particles and Ni-PDA-Ag composite particles with a PDA intermediate layer were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), and X-ray diffraction (XRD). In addition, the electrical conductivity of as-prepared composite particles was evaluated by a 4-point probe. The PDA layer deposited on the surface of Ni was confirmed by XPS spectra, FT-IR spectroscopy, and FE-TEM. FE-SEM images demonstrated that Ag nanoparticles were successfully plated on the PDA layer-coated Ni particles after the electroless Ag plating process. XRD patterns also confirmed the presence of Ag in a metallic state. In addition, the sheet resistance of as-prepared composite particles showed a tendency to decrease with increasing AgNO3 concentration.
Intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT), which deliver the desired radiation dose to the targeted tumors with minimal radiation to the surrounding normal tissue, are extensively used in radiotherapy. IMRT technology increases the daily radiation dose (dose per fraction) based on these technical advantages and contributes significantly to patient convenience by enhancing the radiation treatment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.