The phosphoinositol 3-kinase/Akt pathway plays a critical role in oncogenesis and the dysregulation of this pathway through loss of PTEN is a particularly common phenomenon in aggressive prostate cancers. Several recent studies have indicated that ursolic acid (UA), a pentacyclic triterpenoid, and its derivatives inhibit the growth of cancer cells by cell cycle arrest and the stimulation of apoptosis. In the present study, we report a novel autophagic response of UA in PTEN-deficient PC3 prostate cancer cells. As one of the major types of programmed cell death, autophagy has been observed in response to several anticancer drugs and demonstrated to be responsible for cell death. UA-induced autophagy in PC3 cells is associated with the reduced cell viability and the enhanced expression of LC3-II, an autophagosome marker in mammals, and monodansylcadaverine incorporation into autolysosomes. Furthermore, we found that UA exhibited anti-proliferative effects characterized by G1 phase arrest and autophagy at an early stage that precedes apoptosis. We also show that UA-induced autophagy in PC3 cells are mediated through the Beclin-1 and Akt/mTOR pathways. Inhibition of autophagy by either 3-methyladenine or Beclin-1/Atg5 small interfering RNA enhanced UA-induced apoptosis. Taken together, our data suggest that autophagy functions as a survival mechanism in PC3 cells against UA-induced apoptosis and a rational for the use of autophagy inhibitors in combination with UA as a novel modality of cancer therapy.
The tumor host microenvironment is increasingly viewed as an important contributor to tumor growth and suppression. Cellular oxidative stress resulting from high levels of reactive oxygen species (ROS) contributes to various processes involved in the development and progress of malignant tumors including carcinogenesis, aberrant growth, metastasis, and angiogenesis. In this regard, the stroma induces oxidative stress in adjacent tumor cells, and this in turn causes several changes in tumor cells including modulation of the redox status, inhibition of cell proliferation, and induction of apoptotic or necrotic cell death. Because the levels of ROS are determined by a balance between ROS generation and ROS detoxification, disruption of this system will result in increased or decreased ROS level. Recently, we demonstrated that the control of mitochondrial redox balance and cellular defense against oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) that supplies NADPH for antioxidant systems. To explore the interactions between tumor cells and the host, we evaluated tumorigenesis between IDH2-deficient (knock-out) and wild-type mice in which B16F10 melanoma cells had been implanted. Suppression of B16F10 cell tumorigenesis was reproducibly observed in the IDH2-deficient mice along with significant elevation of oxidative stress in both the tumor and the stroma. In addition, the expression of angiogenesis markers was significantly down-regulated in both the tumor and the stroma of the IDH2-deficient mice. These results support the hypothesis that redox status-associated changes in the host environment of tumor-bearing mice may contribute to cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.