We report a new microfabrication method of multifocal microlens arrays (MF-MLAs) for extended depth-of-field (DoF) using multilayer photolithography and thermal reflow. Microlenses of different focal lengths were simultaneously fabricated on a single glass wafer by using repeated photolithography with multiple photomasks to define microposts of different thicknesses and concurrent thermal reflow of multi-stacked microposts. The diverse lens curvatures of MF-MLAs are precisely controlled by the thickness of the micropost. Hexagonally packaged MF-MLAs clearly show three different focal lengths of 249 µm, 310 µm, and 460 µm for 200 µm in lens diameter and result in multifocal images on a single image sensor. This method provides a new route for developing various three-dimensional (3D) imaging applications such as light-field cameras or 3D medical endoscopes.
Metal nanoislands as plasmonic materials on various substrates have been widely applied for various applications from biosensing to photonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.