Abstract-In recent years, cognitive radio (CR) has received a great attention due to the ability to improve the spectrum utilization. It allows the secondary user (SU) in the CR network to opportunistically access the licensed spectrum of the primary user (PU). For this end, quality of service (QoS) requirements for both the PU and the SU should be guaranteed at the same time. These QoSs can be respectively translated into the interference temperature at the primary receiver and the received signalto-interference-plus-noise-ratio (SINR) of the secondary receiver. In such a CR network, a power control can increase the energy efficiency by keeping the transmission power of the SU as low as possible within the QoS requirements.In this paper, we propose an autonomous distributed power control scheme for CR networks that considers the QoS requirements of the PU and the SU simultaneously. Since the transmission power of each SU is constrained so that the interference temperature at the primary receiver caused by all SUs does not exceed the interference tolerance of the PU, the QoS requirement for the PU is always guaranteed. Through the simulation results, we demonstrate that the proposed scheme never exceed the interference tolerance of the PU.Index Terms−Cognitive radio, quality of service, power control, distributed constrained power control, generalized distributed constrained power control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.