Knowledge distillation extracts general knowledge from a pretrained teacher network and provides guidance to a target student network. Most studies manually tie intermediate features of the teacher and student, and transfer knowledge through predefined links. However, manual selection often constructs ineffective links that limit the improvement from the distillation. There has been an attempt to address the problem, but it is still challenging to identify effective links under practical scenarios. In this paper, we introduce an effective and efficient feature distillation method utilizing all the feature levels of the teacher without manually selecting the links. Specifically, our method utilizes an attention based meta network that learns relative similarities between features, and applies identified similarities to control distillation intensities of all possible pairs. As a result, our method determines competent links more efficiently than the previous approach and provides better performance on model compression and transfer learning tasks. Further qualitative analyses and ablative studies describe how our method contributes to better distillation.
Knowledge distillation extracts general knowledge from a pretrained teacher network and provides guidance to a target student network. Most studies manually tie intermediate features of the teacher and student, and transfer knowledge through predefined links. However, manual selection often constructs ineffective links that limit the improvement from the distillation. There has been an attempt to address the problem, but it is still challenging to identify effective links under practical scenarios. In this paper, we introduce an effective and efficient feature distillation method utilizing all the feature levels of the teacher without manually selecting the links. Specifically, our method utilizes an attention-based meta-network that learns relative similarities between features, and applies identified similarities to control distillation intensities of all possible pairs. As a result, our method determines competent links more efficiently than the previous approach and provides better performance on model compression and transfer learning tasks. Further qualitative analyses and ablative studies describe how our method contributes to better distillation. The implementation code is available at github.com/clovaai/attention-feature-distillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.