Amyloid and tau aggregation are implicated in manifold neurodegenerative diseases and serve as two signature pathological hallmarks in Alzheimer’s disease (AD). Though aging is considered as a prominent risk factor for AD pathogenesis, substantial evidence suggests that an imbalance of essential biometal ions in the body and exposure to certain metal ions in the environment can potentially induce alterations to AD pathology. Despite their physiological importance in various intracellular processes, biometal ions, when present in excessive or deficient amounts, can serve as a mediating factor for neurotoxicity. Recent studies have also demonstrated the contribution of metal ions found in the environment on mediating AD pathogenesis. In this regard, the neuropathological features associated with biometal ion dyshomeostasis and environmental metal ion exposure have prompted widespread interest by multiple research groups. In this review, we discuss and elaborate on findings from previous studies detailing the possible role of both endogenous and exogenous metal ions specifically on amyloid and tau pathology in AD.
Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux is still missing. In this study, we develop a general chemical tool and platform technology termed AUTOphagy-TArgeting Chimera (AUTOTAC), which employs bifunctional molecules composed of target-binding ligands linked to autophagy-targeting ligands. AUTOTACs bind the ZZ domain of the otherwise dormant autophagy receptor p62/Sequestosome-1/SQSTM1, which is activated into oligomeric bodies in complex with targets for their sequestration and degradation. We use AUTOTACs to degrade various oncoproteins and degradation-resistant aggregates in neurodegeneration at nanomolar DC50 values in vitro and in vivo. AUTOTAC provides a platform for selective proteolysis in basic research and drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.