This study investigated the psychrotrophic bacteria isolated from chicken meat to characterize their microbial composition during refrigerated storage. The bacterial community was identified by the Illumina MiSeq method based on bacterial DNA extracted from spoiled chicken meat. Molecular identification of the isolated psychrotrophic bacteria was carried out using 16S rDNA sequencing and their putrefactive potential was investigated by the growth at low temperature as well as their proteolytic activities in chicken meat. From the Illumina sequencing, a total of 187,671 reads were obtained from 12 chicken samples. Regardless of the type of chicken meat (i.e., whole meat and chicken breast) and storage temperatures (4°C and 10°C), Pseudomonas weihenstephanensis and Pseudomonas congelans were the most prominent bacterial species. Serratia spp. and Acinetobacter spp. were prominent in chicken breast and whole chicken meat, respectively. The 118 isolated strains of psychrotrophic bacteria comprised Pseudomonas spp. (58.48%), Serratia spp. (10.17%), and Morganella spp. (6.78%). All isolates grew well at 10°C and they induced different proteolytic activities depending on the species and strains. Parallel analysis of the next generation sequencing and culture dependent approach provides in-depth information on the biodiversity of the spoilage microbiota in chicken meat. Further study is needed to develop better preservation methods against these spoilage bacteria.
In this study, two Listeria bacteriophages, LMP1 and LMP7, were isolated from chicken feces as a means of biocontrol of L. monocytogenes. Both bacteriophages had a lytic effect on L. monocytogenes ATCC 7644, 15313, 19114, and 19115. Phages LMP1 and LMP7 were able to inhibit the growth of L. monocytogenes ATCC 7644 and 19114 in tryptic soy broth at 10°C and 30°C. Nevertheless, LMP1 was more effective than LMP7 at inhibiting L. monocytogenes ATCC 19114. On the contrary, LMP7 was more effective than LMP1 at inhibiting L. monocytogenes ATCC 7644. The morphology of LMP1 and LMP7 resembled that of members of the Siphoviridae family. The growth of L. monocytogenes ATCC 7644 was inhibited by both LMP1 and LMP7 in milk; however, the growth of L. monocytogenes ATCC 19114 was only inhibited by LMP1 at 30°C. The lytic activity of bacteriophages was also evaluated at 4°C in milk in order to investigate the potential use of these phages in refrigerated products. In conclusion, these two bacteriophages exhibit different host specificities and characteristics, suggesting that they can be used as a component of a phage cocktail to control L. monocytogenes in the food industry.
Streptococcus hyointestinalis B19 was isolated from chicken feces collected from local farm in Anseong, Korea. S. hyointestinalis B19 was shown to produce bacteriocin-like compounds exhibiting inhibitory activities against several pathogens including strains of Clostridium perfringens and Listeria monocytogenes. The whole genome of S. hyointestinalis B19 strain was sequenced using PacBio RS II platform. The genome comprised four contigs with a size of 2,217,061 bp. The DNA G + C content was found to be 42.95 mol%. Annotation results revealed 2,266 coding sequences (CDSs), 18 rRNAs, and 61 tRNA genes. Based on genome analysis, we found that the strain B19 possessed various genes associated with bacteriocin synthesis, modification, and transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.