4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily (TNFRSF), is primarily expressed on activated T cells and is known to enhance proliferation of T cells, prevent activation-induced cell death, and promote memory formation of CD8+ T cells. In particular, it is well acknowledged that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells rather than CD4+ T cells, but the underlying mechanism remains unclear. Here we found that 4-1BB triggering markedly increased IL-2Rα (CD25) and IL-2 expressions of CD8+ T cells but minimally for CD4+ T cells. Proliferation of CD8+ T cells was moderately enhanced by direct 4-1BB triggering in the absence of signaling through IL-2Rα/IL-2 interactions, but further promoted in the presence of IL-2Rα/IL-2 interactions. Among the TNFRSF members including OX40, GITR, CD30, and CD27, 4-1BB was superior in the ability to induce IL-2Rα expression on CD8+ T cells. When the primary and secondary expansions of CD8+ T cells in vivo were examined by adoptively transferring OVA-specific CD8+ T cells along with the treatment with agonistic anti-4-1BB and/or antagonistic anti-CD25 F(ab’)2 mAb, 4-1BB triggering enhanced both primary and secondary expansion of CD8+ T cells in vivo, and the 4-1BB effects were moderately suppressed in primary expansion while completely abolished in secondary expansion of OVA-specific CD8+ T cells by blocking IL-2Rα. These results suggest that 4-1BB-mediated increases of IL-2Rα and IL-2 prolong the effects of transient TCR- and 4-1BB-mediated signaling in CD8+ T cells, and that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells through the amplification of autocrine IL-2/IL-2R signaling loop.
Chimeric antigen receptor (CAR) T cell therapy is an effective method for treating specific cancers. CARs are normally designed to recognize antigens, which are highly expressed on malignant cells but not on T cells. However, when T cells are engineered with CARs that recognize antigens expressed on the T cell surface, CAR T cells exhibit effector function on other T cells, which results in fratricide, or killing of neighboring T cells. Here, using human leukocyte antigen-DR (HLA-DR)-targeted CAR T cells, we show that weak affinity between CAR and HLA-DR reduces fratricide and induces sustained CAR downregulation, which consequently tunes the avidity of CAR T cells, leading to desensitization. We further demonstrate that desensitized CAR T cells selectively kill Epstein-Barr virus-transformed B cells with enhanced HLA-DR expression, while sparing normal B cells. Our study supports an avidity-tuning strategy that permits sensing of antigen levels by CAR T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.