Ceramic packages with different paths of thermal dissipation were designed by a simulation using the finite-volume method. Thermal resistances of the packages were obtained from the calculation of temperatures of LED (light emitting diode) chips. It was shown that the thermal characteristics of LED packages were strongly affected by the contact area of a thermal via in contact with a LED chip rather than that in contact with a ceramic mould. Ceramic LED packages were fabricated and characterized. A deviation of simulated results from experimental results was found. The difference was attributed to the poor contact roughness between the LED chip and the thermal via.
Thermal transient measurements of high power GaN-based LEDs with multi-chip designs are presented and discussed. Once transient cooling curve was obtained, the structure function theory was applied to determine the thermal resistance of packages. The measured total thermal resistances from junction to ambient were 19.87 K/W, 10.78 K/W, 6.77 K/W for the one-chip, two-chip and four-chip package, respectively. The contribution of each component to the total thermal resistance of the package can be calculated from the cumulative structure function and differential structure function. The total thermal resistance of multi-chip package is found to decrease with the number of chips due to parallel heat dissipation. Very useful thermal design rule for high power multi-chip LED package is analogized from the experiments. It was found that the effect of the number of chips in a package on the thermal resistance depends on the ratio of partial thermal resistance of chip and that of slug. Thermal resistance for full color multi chip LEDs, where each chip is driven independently, was measured as well and the implication was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.