Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.Chromatin reorganization of the complete genome leading to compaction is an essential feature during spermiogenesis (8,21,22,41). The switch from the nucleosomal to the condensed conformation in mammals is essential to get a more hydrodynamic sperm head and also may protect the genome from physical and chemical damage. As this process leads to an extremely condensed state of the haploid genome in the sperm, a reorganization of the paternal genome in the male pronucleus after fertilization and before zygote formation is essential (32).For mammals, it is known that the somatic set of histones are modified, as these are in part replaced by specific variants during meiotic prophase. After meiosis, histones are replaced by major transition proteins TP1 and TP2 (34) and subsequently by highly basic protamines to ensure the remodeling of chromatin to a typically highly condensed and transcriptionally silent state of mature sperm. These replacements leads to a shift from histone-based nucleosomal conformation to a radically different conformation, resembling stacked doughnut structures containing protamines as major chromatin condensing proteins and DNA. Some mammals have only one protamine gene (13), while mice and humans have two genes encoding two different protamines, both of which are essential for fertility and are haploinsufficient (11). Recently, HILS1 (spermatid-specific linker histone H1-like protein) was proposed to participate in chromatin remodeling in mouse and human spermiogenesis (23,49). The transition between histone rem...
MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.
SummaryTo date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track β cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. β cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring β cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of β cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of β cell identity in diabetes.
SUMMARYChromatin is the physical template that stabilizes and specifies transcriptional programs. To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combined deep epigenome mapping with single cell transcriptomics to mine for evidence of chromatin dysregulation in type-2 diabetes. We identify two chromatin-state signatures that track the trajectory of β-cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-domains and a loss of expression at a subclass of highly active domains containing key lineage-defining genes. β-cell specific deletion of Polycomb (Eed/PRC2) triggers parallel transcriptional signatures. Intriguingly, these β-cell Eed-knockouts also exhibit highly penetrant hyperglycemia-independent dedifferentiation indicating that Polycomb dysregulation sensitizes the β-cell for dedifferentiation. These findings provide novel resources for exploring transcriptional and epigenetic control of β-cell (dys)function. They identify PRC2 as necessary for long-term maintenance of β-cell identity. The data suggest a two-hit model for loss of β-cell identity in diabetes and highlight epigenetic therapeutic potential to block dedifferentiation.
The genes don juan (dj) and don juan like (djl) encode basic proteins expressed in the male germline. Both proteins show a similar expression pattern being localized in the sperm heads during chromatin condensation and along the flagella. Prematurely expressed Don Juan-eGFP and Myc-Don Juan Like localize to the cytoplasm of spermatocytes and in mitochondrial derivatives from the nebenkern stage onward suggesting that both proteins associate with the mitochondria along the flagella in elongated spermatids. Premature expression of Myc-Don Juan Like does not impair spermatogenesis where-as Don Juan-eGFP when prematurely expressed causes male sterility as spermatids fail to individualize. In spite of the sequence identity of 72% on the nucleotide level and 42% on the protein level, the presumptive promoter regions and the untranslated regions of the mRNA are diverged. Our in vivo analysis revealed that don juan and don juan like are transcriptionally and translationally controlled by distinct short cis regulatory regions. Transcription of don juan and don juan like depends on the male germ line specific TAF II 80, Cannonball (Can). Translational repression elements for both mRNAs are localized in the 5 UTR and are capable to form distinct secondary structures in close proximity to the translational initiation codon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.