Diatoms from surface sediment samples collected from Enderby Basin of Indian Sector of Southern Ocean were analyzed to determine the relative abundance and distribution of seven key indicator diatom species viz. Sea ice related species Fragilariopsis rhombica, F. separanda, F. curta, F. ritscheri, Thalassiosira tumida and Actinocyclus actinochilus and Open Ocean species F. kerguelensis on the basis of modern physico-chemical parameters. The relative abundances of different species observed -3.13% and A. actinochilus -9.38-13.33%. The increasing abundance of F. kerguelensis consecutively suggests the effect of Antarctic bottom water in the study area which is further substantiated by the presence and increasing abundance of F. ritscheri. The gradual decrease in abundance or absence of sea ice related species from the sampled stations indicates the summer and winter sea ice extent concentration in the study area. The nutrient concentration correlates with the distribution and abundances of diatom species.
Kongsfjorden is a fjord in Spitsbergen (Svalbard archipelago) that lies adjacent to both Arctic and Atlantic water masses and is therefore a suitable site to understand the effects of climate change on ecosystems. To decipher the effect of the lateral advection of transformed Atlantic water (TAW) within the fjord, spatial variations of foraminiferal tests, their test size variations and stable isotopic composition (δ13C and δ18O) in the surface sediments were studied. Total organic carbon and textural analyses were also carried out. The dominant benthic foraminifera included Nonionellina labradorica, Elphidium excavatum, Cassidulina reniforme, Quinqueloculina stalkeri and Islandiella islandica. Nonionellina labradorica was the predominant species in the outer fjord, whereas Elphidium excavatum and Cassidulina reniforme were dominant in the inner fjord. Total organic carbon and the test size of Nonionellina labradorica within the fjord were highly correlated (r= 0.97) and both showed a decreasing trend towards the inner fjord Based on the distribution and abundance of Nonionellina labradorica as well as temperature profiles, we suggest that there was little or no major change in the lateral advection of TAW within the fjord in the immediate past.
Abstract. Antarctic sea ice plays a critical role in the Earth system, influencing energy, heat and freshwater fluxes, air–sea gas exchange, ice shelf dynamics, ocean circulation, nutrient cycling, marine productivity and global carbon cycling. However, accurate simulation of recent sea-ice changes remains challenging and, therefore, projecting future sea-ice changes and their influence on the global climate system is uncertain. Reconstructing past changes in sea-ice cover can provide additional insights into climate feedbacks within the Earth system at different timescales. This paper is the first of two review papers from the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) working group. In this first paper, we review marine- and ice core-based sea-ice proxies and reconstructions of sea-ice changes throughout the last glacial–interglacial cycle. Antarctic sea-ice reconstructions rely mainly on diatom fossil assemblages and highly branched isoprenoid (HBI) alkenes in marine sediments, supported by chemical proxies in Antarctic ice cores. Most reconstructions for the Last Glacial Maximum (LGM) suggest that winter sea ice expanded all around Antarctica and covered almost twice its modern surface extent. In contrast, LGM summer sea ice expanded mainly in the regions off the Weddell and Ross seas. The difference between winter and summer sea ice during the LGM led to a larger seasonal cycle than today. More recent efforts have focused on reconstructing Antarctic sea ice during warm periods, such as the Holocene and the Last Interglacial (LIG), which may serve as an analogue for the future. Notwithstanding regional heterogeneities, existing reconstructions suggest that sea-ice cover increased from the warm mid-Holocene to the colder Late Holocene with pervasive decadal- to millennial-scale variability throughout the Holocene. Studies, supported by proxy modelling experiments, suggest that sea-ice cover was halved during the warmer LIG when global average temperatures were ∼2 ∘C above the pre-industrial (PI). There are limited marine (14) and ice core (4) sea-ice proxy records covering the complete 130 000 year (130 ka) last glacial cycle. The glacial–interglacial pattern of sea-ice advance and retreat appears relatively similar in each basin of the Southern Ocean. Rapid retreat of sea ice occurred during Terminations II and I while the expansion of sea ice during the last glaciation appears more gradual especially in ice core data sets. Marine records suggest that the first prominent expansion occurred during Marine Isotope Stage (MIS) 4 and that sea ice reached maximum extent during MIS 2. We, however, note that additional sea-ice records and transient model simulations are required to better identify the underlying drivers and feedbacks of Antarctic sea-ice changes over the last 130 ka. This understanding is critical to improve future predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.