We investigate a strategy to address the problem of low aircraft detection probability of space-based Automatic Dependent Surveillance-Broadcast (ADS-B). A nineteen-element hexagonal array and adaptive multi-beamforming method is proposed. This method aims to adjust the beam pattern dynamically to reduce signal collision and enlarge coverage. With the focus on the mission requirement of global aircraft detection by 2020, the appropriate gain and direction of beams are studied and designed in detail. Theoretical analysis and simulations show that this adaptive multi-beam antenna can greatly improve flight detection probability at an average reporting interval from 10 seconds to 5 seconds when compared with the traditional fixed multi-beam antenna. The results of this work show that the design of a 19-element antenna along with the adaptive multi-beamforming method can be considered as a building block of future space-based ADS-B.
The satellite constellation with automatic dependent surveillance-broadcast on-board is of great importance for air traffic surveillance due to its multiple advantages compared with traditional methods. Although some research has been conducted on satellite constellation design based on coverage performance, the findings cannot entirely satisfy all the requirements of air traffic surveillance owing to the lack of analysis on inter-satellite links and network transmission. This paper presents a novel design of a low earth orbit satellite constellation network to solve this problem. Based on the requirements of space-based surveillance, an evaluation model of constellation performance is proposed concerning coverage, link and transmission. The simulation results show that the evaluation model can reflect the performance of a satellite constellation network designed for a space-based surveillance system, and a 55-satellite constellation design scheme with fairly good performance can fulfil the function of global real-time air traffic surveillance.
Aircraft information can be easily integrated to Internet of Things by ADS-B technology. The spaceborne ADS-B receiver equipped with TianTuo-3 satellite has realized China’s first aircraft surveillance from space, it has been working well and stably receiving over 100 million ADS-B messages from global aircraft during last four years. In this paper, the data obtained by the TianTuo-3 ADS-B receiver is analysed in detail, including statistical analysis on the detection probability, the proportion of all types of aircraft, the increasing rate of aircraft in the world. These results demonstrated that satellite ADS-B system provides an all-around safety and surveillance to air traffic management, and it can help in rescuing, surveying, or tracking of special aircraft, or analysing world flight for economic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.