Apoptosis of pericytes (PCs) is an early event in diabetic retinopathy. It is generally thought to be a consequence of sustained hyperglycemia. In keeping with this, long-term (>7 days) incubation of cultured PCs in a high-glucose media has been shown to increase apoptosis. We examine here whether the saturated free fatty acid palmitate, the concentration of which is often elevated in diabetes, has similar effects on cultured PCs. Incubation with 0.4 mmol/l palmitate for 24 h induced both oxidant stress and apoptosis, as evidenced by a sixfold increase in DCF fluorescence and a twofold increase in caspase-3 activation, respectively. NAD(P)H oxidase appeared to be involved in these responses, since overexpression of dominant-negative subunits of NAD(P)H oxidase, such as phox47(DN), diminished oxidant stress, and phox67(DN) and N-17 RAC1(DN) prevented the increase in caspase-3 activity. Likewise, overexpression of vRAC, a constitutively active RAC1, increased caspase-3 activity to the same extent as palmitate alone. The effects of vRAC and palmitate were not additive. In parallel with the increases in oxidative stress, the redox-sensitive transcription factor nuclear factor-B (NF-B) was activated in cells incubated with 0.4 mmol/l palmitate. Furthermore, inhibition of NF-B activation by various means inhibited caspase-3 activation. Finally, incubation with palmitate increased the cellular content of ceramide, a molecule linked to apoptosis and increases in oxidative stress and NF-B activation in other cells. In keeping with such a role, in PCs both coincubation with fumonisin B1 (a ceramide synthase inhibitor) and overexpression of ceramidase I reversed the proapoptotic effect of palmitate. On the other hand, they increased rather than decreased DCF fluorescence. In conclusion, the results suggest that palmitate-induced apoptosis in PCs is associated with activation of NAD(P)H oxidase and NF-B and an increase in ceramide. The precise interactions between these molecules in causing apoptosis and the importance of oxidant stress as a contributory factor remain to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.