1. We studied the responses of 103 neurons in visual area V4 of anesthetized macaque monkeys to two novel classes of visual stimuli, polar and hyperbolic sinusoidal gratings. We suspected on both theoretical and experimental grounds that these stimuli would be useful for characterizing cells involved in intermediate stages of form analysis. Responses were compared with those obtained with conventional Cartesian sinusoidal gratings. Five independent, quantitative analyses of neural responses were carried out on the entire population of cells. 2. For each cell, responses to the most effective Cartesian, polar, and hyperbolic grating were compared directly. In 18 of 103 cells, the peak response evoked by one stimulus class was significantly different from the peak response evoked by the remaining two classes. Of the remaining 85 cells, 74 had response peaks for the three stimulus classes that were all within a factor of 2 of one another. 3. An information-theoretic analysis of the trial-by-trial responses to each stimulus showed that all but two cells transmitted significant information about the stimulus set as a whole. Comparison of the information transmitted about each stimulus class showed that 23 of 103 cells transmitted a significantly different amount of information about one class than about the remaining two classes. Of the remaining 80 cells, 55 had information transmission rates for the three stimulus classes that were all within a factor of 2 of one another. 4. To identify cells that had orderly tuning profiles in the various stimulus spaces, responses to each stimulus class were fit with a simple Gaussian model. Tuning curves were successfully fit to the data from at least one stimulus class in 98 of 103 cells, and such fits were obtained for at least two classes in 87 cells. Individual neurons showed a wide range of tuning profiles, with response peaks scattered throughout the various stimulus spaces; there were no major differences in the distributions of the widths or positions of tuning curves obtained for the different stimulus classes. 5. Neurons were classified according to their response profiles across the stimulus set with two objective methods, hierarchical cluster analysis and multidimensional scaling. These two analyses produced qualitatively similar results. The most distinct group of cells was highly selective for hyperbolic gratings. The majority of cells fell into one of two groups that were selective for polar gratings: one selective for radial gratings and one selective for concentric or spiral gratings. There was no group whose primary selectivity was for Cartesian gratings. 6. To determine whether cells belonging to identified classes were anatomically clustered, we compared the distribution of classified cells across electrode penetrations with the distribution that would be expected if the cells were distributed randomly. Cells with similar response profiles were often anatomically clustered. 7. A position test was used to determine whether response profiles were sensitive to pre...
We investigate the effects of relativistic movement of optical medium on the conditions of constructive and destructive interference, reflection and transmission pattern, and performance of spectroscopes. First, we consider the case of two beams reflected from a relativistically moving thin film and derive the conditions of constructive and destructive interference. Then we broaden the idea to multiple beam interference and formulate a new modified equation of reflection and transmission pattern of light from a relativistically moving plane parallel dielectric film. Finally, we determine the new effective resolving power of a Fabry Perot spectroscope, which has a moving dielectric medium in its etalon. Here, we consider the case where the optical mediums move parallel to the plane of incidence of light. Throughout this paper, we use basic Lorentz transformation of space and time co-ordinates and electromagnetic fields to conduct these investigations. This paper can strongly motivate undergraduate physics students to associate the concepts of special relativity and optical interference.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.