Human tyrosyl-DNA phosphodiesterases (TDP) hydrolyze the phosphodiester bond between DNA and the catalytic tyrosine of Top1 to excise topoisomerase I cleavage complexes (Top1cc) that are trapped by camptothecin (CPT) and by genotoxic DNA alterations. Here we show that the protein arginine methyltransferase PRMT5 enhances the repair of Top1cc by direct binding to TDP1 and arginine dimethylation of TDP1 at residues R361 and R586. Top1-induced replication-mediated DNA damage induces TDP1 arginine methylation, enhancing its 3′- phosphodiesterase activity. TDP1 arginine methylation also increases XRCC1 association with TDP1 in response to CPT, and the recruitment of XRCC1 to Top1cc DNA damage foci. PRMT5 knockdown cells exhibit defective TDP1 activity with marked elevation in replication-coupled CPT-induced DNA damage and lethality. Finally, methylation of R361 and R586 stimulate TDP1 repair function and promote cell survival in response to CPT. Together, our findings provide evidence for the importance of PRMT5 for the post-translational regulation of TDP1 and repair of Top1cc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.