Canine parvovirus type 2 (CPV‐2) is an important pathogen causing haemorrhagic enteritis in domestic dogs and wildlife worldwide. In early 2000, canine parvovirus type 2c (CPV‐2c) was first reported and subsequently became a predominant subtype circulating in Europe and the Americas. CPV‐2c has also been reported in Asia, including cases in China, India, Taiwan and Vietnam. However, CPV‐2c has never been reported in Thailand. In this study, we conducted viral enteric disease surveillance in dogs and cats in Thailand during 2016–2018. During 20 months of surveillance, 507 rectal swab samples were collected from dogs (n = 444) and cats (n = 63) with and without clinical signs. The samples were examined for parvovirus by using VP2 gene‐specific PCR for parvovirus. Our results showed that the positivity of canine parvovirus (CPV) was 29.95% and that of feline parvovirus (FPV) was 58.73%. In this study, we characterized 34 parvoviruses by VP2 gene sequencing. Moreover, two Thai‐CPV‐2 (Dog/CU‐24 and Cat/CU‐21) were characterized by whole genome sequencing. The phylogenetic results showed that Thai‐CPV‐2 had the highest nucleotide identities and clustered with Asian‐CPV‐2c but were in separate subclusters from the North American and European CPV‐2c. Similarly, whole genome analyses showed that Thai‐CPVs are closely related to Asian‐CPV‐2c, with unique amino acids at positions 297A, 324I, 370R and 426E. In summary, our results demonstrated the emergence of Asian‐CPV‐2c in dogs and cats in Thailand. Thus, the surveillance of CPV‐2 in domestic dogs and cats should be further conducted on a larger scale to determine the dynamics of predominant variants and their distributions in the country and in the Southeast Asia region.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 pandemic in humans since late 2019. Here, we investigated SARS-CoV-2 infection in dogs and cats during COVID-19 quarantine at private veterinary hospitals in Thailand. From April to May 2021, we detected SARS-CoV-2 in three out of 35 dogs and one out of nine cats from four out of 17 households with confirmed COVID-19 patients. SARS-CoV-2 RNA was detected from one of the nasal, oral, rectal and environmental swabs of dog-A (15 years old, mixed breed, male dog), cat-B (1 year old, domestic shorthair, male cat), dog-C (2 years old, mixed breed, female dog) and dog-D (4 years old, Pomeranian, female dog). The animals tested positive for SARS-CoV-2 RNA from 4 to 30 days after pet owners were confirmed to be COVID-19 positive. The animals consecutively tested positive for SARS-CoV-2 RNA for 4 to 10 days. One dog (dog-A) showed mild clinical signs, while the other dogs and a cat remained asymptomatic during quarantine at the hospitals. SARS-CoV-2 specific neutralizing antibodies were detected in both the dogs and cat by surrogate virus neutralization tests. Phylogenetic and genomic mutation analyses of whole genome sequences of three SARS-CoV-2 strains from the dogs and cat revealed SARS-CoV-2 of the Alpha variant (B.1.1.7 lineage). Our findings are suggestive of human-to-animal transmission of SARS-CoV-2 in COVID-19-positive households and contamination of viral RNA in the environment. Public awareness of SARS-CoV-2 infection in pet dogs and cats in close contact with COVID-19 patients should be raised.
In June–September 2021, we investigated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections in domestic dogs and cats (n = 225) in Bangkok and the vicinities, Thailand. SARS-CoV-2 was detected in a dog and a cat from COVID-19 positive households. Whole genome sequence analysis identified SARS-CoV-2 delta variant of concern (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from dog and cat were grouped into sublineage AY.30 and AY.85, respectively. Antibodies against SARS-CoV-2 could be detected in both dog (day 9) and cat (day 14) after viral RNA detection. This study raises awareness on spill-over of variant of concern in domestic animals due to human-animal interface. Thus, surveillance of SARS-CoV-2 in domestic pets should be routinely conducted.
The pig is known as a "mixing vessel" for influenza A viruses. The co-circulation of multiple influenza A subtypes in pig populations can lead to novel reassortant strains. For this study, swine influenza surveillance was conducted from September 2011 to February 2014 on 46 swine farms in Thailand. In total, 78 swine influenza viruses were isolated from 2,821 nasal swabs, and 12 were selected for characterization by whole genome sequencing. Our results showed that the co-circulation of swine influenza subtypes H1N1, H3N2, and H1N2 in Thai swine farms was observable throughout the 3 years of surveillance. Furthermore, we repeatedly found reassortant viruses between endemic swine influenza viruses and pandemic H1N1 2009. This observation suggests that there is significant and rapid evolution of swine influenza viruses in swine. Thus, continuous surveillance is critical for monitoring novel reassortant influenza A viruses in Thai swine populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.