Hama Empoasca adalah salah satu hama utama tanaman teh di Asia. Hama ini sulit dimonitor karena ukurannya kecil, lincah, mampu terbang dan meloncat. Pengamatan serangan hama ini agar lebih praktis dan mudah dengan cara mengatasinya. Gejala serangan ini dapat diakuisisi dan direpresentasikan dalam bentuk citra digital. Penelitian ini menyediakan sebuah algoritma yang dapat membantu membedakan daun teh muda atau pucuk daun teh yang sehat dan yang terkena gejala awal hama Empoasca. Sampel pucuk daun teh Yang sehat ATAU terserang hama Empoasca diproses using image preprocessing Dan ektraksi Ciri DENGAN Metode histogram Serta identifikasi Berbasis Neural Network . Ciri yang digunakan pada penelitian ini adalah mean, standar deviasi, dan entropy sebagai masukan jaringan syaraf tiruan . Data Pelatihan Yang digunakan sebanyak 110 citra, terdiri Dari 43 citra data normal Dan 23 citra terkena gejala Awal hama Empoasca Serta Data Pengujian sebanyak 44 citra. Pengujian algoritma ini menghasilkan unjukkerja terbaik sebesar 95,45% pada alfa 0,1 dan decalfa 0,5.
Buah mangga memiliki banyak jenis salah satunya adalah mangga harum manis. Kematangan buah mangga arum manis ada yang alamiah atau melalui proses pengkarbitan. Karbit adalah kepanjangan dari kalsium karbida. Karbit biasanya digunakan dalam proses las karbit dan juga dapat mempercepat pematangan buah.Pengambilansampledilakukan pada dua jenis kematangan mangga harum manis yaitu mangga harum manis karbitan dan tidak karbitan. Pengembanganalgoritma yang dilakukan bertujuan untuk mengidentifikasi mangga harum manis yang dapat membedakan kematangan mangga karbitan dan tidak karbitan menggunakan Learning Vector Quantization(LVQ). Ciri yang digunakan untuk mengidentifikasi citra mangga adalah rata-rata, varian dan standar deviasi.Jumlah data pelatihan yang digunakan terdiri dari 2 kelas(kelas 1: mangga karbitan, kelas 2: mangga tidak karbitan), dan masing-masing kelas berjumlah 30 data pelatihandengan total data berjumlah 60 data pelatihan. Sedangkan untuk data uji masing-masing kelas menggunakan 25 data uji dengan total berjumlah 50 data uji.Pada proses pelatihan menggunakan parameter LVQ (alfa0.001 dengan dec alfa0.9) diperoleh unjukkerja terbaik sebesar 98.33%. Bobot akhir yang diperoleh dari unjukkerja terbaik pada pelatihan digunakan untuk melakukan pengenalan. Unjuk kerja terbaik dari 50 data uji mencapai 98%dengan perincian 96 % mangga karbitan dan 100 % mangga tidak karbitan.
Tomatoes have a risk of carrying pesticides above the maximum residue limit (MRL) because the fruit is directly sprayed with pesticides during its production process. Pesticide residue in farmers’ produce pose indirect effects to the consumers, but in the long run, it may cause health problems such as neural disorders as well as enzyme metabolism. This research identifies the image of tomatoes containing pesticides by using two types of tomatoes were used as samples, namely tomatoes which contain pesticides, and those which do not contain pesticides. This research aims to develop an algorithm to identify tomatoes that contain pesticides and those which do not contain pesticides using Learning Vector Quantization (LVQ). The characteristics used to identify tomato images are average, variant, and standard deviation. This research consisted of two classes and used 40 training image data and 40 test image data for each class. During the training process using LVQ parameters, there were 98.75% best percentage at alpha 0.001 and decalpha 0.9 with the lowest iteration of 3. The final weight obtained from the parameters was then used to perform test data identification. In terms of the best performance on the test data, it was with alpha 0.001 and decalpha 0.9, which reached 97.5%.
Teknologi pengenalan rambu lalu lintas yang sering disebut dengan traffic sign recognition (TSR), digunakan untuk mengenali rambu lalu lintas melalui pemanfaatan pengolahan citra. TSR sendiri dapat diaplikasikan pada sistem pembantu pengemudi, sistem pembantu pengemudi tingkat lanjut, sistem mengemudi otonom, keamanan jalan raya, pemahaman suasana perkotaan, dan pemantauan rambu untuk kepentingan perawatan. Perbaruan dari pengenalan rambu lalu lintas di Indonesia menggunakan multi-scale convolutional neural network (CNN) telah disajikan pada artikel ini. Dataset yang digunakan pada penelitian ini berjumlah 2050 data citra rambu lalu lintas yang dikelompokkan kedalam 10 kelas. Model CNN terdiri dari tiga lapisan konvolusi berukuran 3x3, tiga lapisan penggabungan (Maxpool) berukuran 2x2 dan satu lapisan fully-connected yang memanfaatkan fungsi aktivasi Softmax. Jumlah filter yang digunakan pada setiap lapisan konvolusi adalah 32. Algoritma pelatihan yang digunakan yaitu Stochastic gradient descent (SGD). Dengan menggunakan 1750 data citra latih, nilai epoch 20, dan laju pelatihan 0,005, nilai galat dan nilai akurasi yang didapatkan pada tahap pelatihan adalah masing-masing 0,0026 dan 100%. Sedangkan pada tahap pengujian, dengan 300 data citra uji, model CNN mampu memperoleh nilai galat 0,017 dan nilai akurasi mencapai 99,67%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.