The acylphloroglucinol rhodomyrtone is a promising new antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa, a plant used in Asian traditional medicine. While many studies have demonstrated its antibacterial potential in a variety of clinical applications, very little is known about the mechanism of action of rhodomyrtone. Preceding studies have been focused on intracellular targets, but no specific intracellular protein could be confirmed as main target. Using live cell, high-resolution, and electron microscopy we demonstrate that rhodomyrtone causes large membrane invaginations with a dramatic increase in fluidity, which attract a broad range of membrane proteins. Invaginations then form intracellular vesicles, thereby trapping these proteins. Aberrant protein localization impairs several cellular functions, including the respiratory chain and the ATP synthase complex. Being uncharged and devoid of a particular amphipathic structure, rhodomyrtone did not seem to be a typical membrane-inserting molecule. In fact, molecular dynamics simulations showed that instead of inserting into the bilayer, rhodomyrtone transiently binds to phospholipid head groups and causes distortion of lipid packing, providing explanations for membrane fluidization and induction of membrane curvature. Both its transient binding mode and its ability to form protein-trapping membrane vesicles are unique, making it an attractive new antibiotic candidate with a novel mechanism of action.
bDue to their abilities to form strong biofilms, Staphylococcus aureus and Staphylococcus epidermidis are the most frequently isolated pathogens in persistent and chronic implant-associated infections. As biofilm-embedded bacteria are more resistant to antibiotics and the immune system, they are extremely difficult to treat. Therefore, biofilm-active antibiotics are a major challenge. Here we investigated the effect of the lantibiotic gallidermin on two representative biofilm-forming staphylococcal species. Gallidermin inhibits not only the growth of staphylococci in a dose-dependent manner but also efficiently prevents biofilm formation by both species. The effect on biofilm might be due to repression of biofilm-related targets, such as ica (intercellular adhesin) and atl (major autolysin). However, gallidermin's killing activity on 24-h and 5-day-old biofilms was significantly decreased. A subpopulation of 0.1 to 1.0% of cells survived, comprising "persister" cells of an unknown genetic and physiological state. Like many other antibiotics, gallidermin showed only limited activity on cells within mature biofilms.
The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25–62.5 µg/ml, and the minimal bactericidal concentration (MBC) was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5–125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.
Punica granatum (P. granatum) Linn. pericarp has been commonly employed as a crude drug in Thai traditional medicines for the treatment of diarrhea. The antibacterial activity of extracts from P. granatum pericarp against different strains of enterohemorrhagic Escherichia coli (E. coli) O157 : H7 and other strains of enterohemorrhagic E. coli were investigated. Successive chloroform, 95% ethanol, and water extracts of the plant were examined. The ethanolic extract was found to be the most effective against all the strains examined. Both the ethyl acetate and n-butanol fractions of P. granatum pericarp were demonstrated to have high activity with the highest minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of 0.05 and 0.05 and 0.39 and 0.19 mg/ml, respectively. The inhibitory effects of both fractions on the production of verocytotoxin (VT)1 and VT2 by enterohemorrhagic E. coli O157 : H7 was observed at very low concentrations of 1/10 of the MIC value (0.05-0.09 mg/ml, respectively). Phytochemical screening of the ethanolic extracts demonstrated that they contain flavonoids, sterols, triterpenes, phenols, and tannins. Our findings suggest that an appropriate bioactive compound may be developed from P. granatum pericarp as alternative treatment for this E. coli O157 : H7 infection. The crude plant may also be administered to prevent VT production in the human intestine to solve the problem of subinhibitory effects from the use of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.