With the rapid development of China’s Internet finance industry and the continuous growth of transaction amount in recent years, a variety of financial risks have increased, especially credit risk in the financial industry. Also, the credit risk evaluation is usually made by using the application card scoring model, which has the shortcomings of strict data assumption and inability to process complex data. In order to overcome the limitations of the credit card scoring model and evaluate credit risk better, this paper proposes a credit evaluation model based on extreme gradient boosting tree (XGBoost) machine learning (ML) algorithm to construct a credit risk assessment model for Internet financial institutions. At the same time, an Internet lending company in China is taken as a case study to compare the performance of the traditional credit card scoring model and the proposed machine learning (ML) algorithm model. The results show that ML algorithm has a very significant advantage in the field of Internet financial risk control, it has more accurate prediction results and has no particularly strict assumptions and restrictions on data, and the process of processing data is more convenient and reliable. We should increase the application of ML in the field of financial risk control. The value of this paper lies in enriching the related research of financial technology and providing a new reference for the practice of financial risk control.
Geospatial patterns of forest fragmentation over the three traditional giant forested areas of China (Northeastern, southwestern and Southern China) were analyzed comparatively and reported based on a 250-m resolution land cover dataset. Specifically, the spatial patterns of forest fragmentation were characterized by combining geospatial metrics and forest fragmentation models. The driving forces resulting in the differences of the forest spatial patterns were also investigated. Results suggested that forests in southwest China had the highest severity of forest fragmentation, followed by south region and northeast region. The driving forces of forest fragmentation in China were primarily the giant population and improper exploitation of forests. In conclusion, the generated information in the study provided valuable insights and implications as to the fragmentation patterns and the conservation of biodiversity or genes, and the use of the chosen geospatial metrics and forest fragmentation models was quite useful for depicting forest fragmentation patterns.
With the vigorous development of digital economy based on digital technologies such as Internet of things (IoT), big data, and artificial intelligence, new vitality has been injected into China’s economic model. Inclusive green growth (IGG) supports the transformation of society towards a better quality of life and well-being, as well as environmental protection. Therefore, it is crucial to identify the main drivers of IGG. However, IGG is subject to a variety of interpretations and lacks definitional clarity. To brigade this gap, this study primarily evaluates the performance of IGG and explores the key drivers on IGG in China. Specifically, the data envelopment analysis (DEA) model is employed to calculate IGG for 281 cities in China during 2005–2020. Subsequently, we take advantage of a nest of machine learning (ML) algorithm to demonstrate the vital drivers of urban IGG, which avoids the defects of endogenous linear hypothesis of traditional econometric methods. The results indicate that digitization represented by the IoT and other digital technology is the core drivers of the urban IGG in the overall sample, accounting for about 50% among all of drivers. This finding provides new evidence supporting the “high-quality development” strategy in China, as well as shedding light on grasping the principal fulcrum to achieve the transformation towards IGG in developing economies similar to China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.