The aroma produced in glucose-amino acids (individual and in combination) Maillard reaction, under acidic conditions at 100°C were determined and compared by trained panellist. Proline produced pleasant, flowery and fragrant aroma. Phenylalanine and tyrosine produced dried roses aroma. Alanine produced fruity and flowery odour, while aspartic acid and serine both produced pleasant, fruity aroma. Arginine, produced a pleasant, fruity and sour aroma at pH 5.2, but not at its natural pH. Glycine, lysine, threonine and valine produced a pleasant caramel-like odour. Isoleucine and leucine gave off a burnt caramel aroma. Methionine developed a fried potato odour. Cysteine and methionine produced savoury, meaty and soy sauce-like flavours. A combination of these amino acids produced different types of aroma, with the stronger note dominating the odour of the mixture. This study will help the prediction of flavour characteristics of hydrolysates from different protein sources.
Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
BackgroundBromelain, which is a cysteine endopeptidase commonly found in pineapple stems, has been investigated as a potential anti-cancer agent for the treatment of breast cancer. However, information pertaining to the effects of combining bromelain with existing chemotherapeutic drugs remains scarce. This study aimed to investigate the possible synergistic cytotoxic effects of using bromelain in combination with cisplatin on MDA-MB-231 human breast cancer cells.MethodMDA-MB-231 cells were treated with different concentrations (0.24–9.5 µM) of bromelain or cisplatin alone, as well as four different combinations of these two agents to assess their individual and combination effects after 24 and 48 h. Cell viability was analyzed using an MTT assay. The induction of apoptosis was assessed using cell cycle analysis and an Annexin V-FITC assay. The role of the mitochondrial membrane potential in the apoptotic process was assessed using a JC-1 staining assay. Apoptotic protein levels were assessed by western blot analysis and proteome profiling using an antibody array kit.ResultsSingle-agent treatment with cisplatin or bromelain led to dose- and time-dependent decreases in the viability of the MDA-MB-231 cells at 24 and 48 h. Furthermore, most of the combinations evaluated in this study displayed synergistic effects against MDA-MB-231 cells at 48 h, with combination 1 (bromelain 2 µM + cisplatin 1.5 µM) exhibiting the greatest synergistic effect (P = 0.000). The results of subsequent assays indicated that combination 1 treatment induced apoptosis via mitochondria-mediated pathway. Combination 1 also resulted in significant decreases in the levels of several apoptotic proteins such as Bcl-x and HSP70, compared with bromelain (P = 0.002 and 0.000, respectively) or cisplatin (P = 0.000 and 0.001, respectively) single treatment. Notably, MDA-MB-231 cells treated with combination 1 showed increased levels of the pro-apoptotic proteins Bax compared with those treated with bromelain (P = 0.000) or cisplatin single treatment (P = 0.043).ConclusionBromelain in combination with cisplatin synergistically enhanced the induction of apoptosis in MDA-MB-231 cells.
Clostridium butyricum EB6 successfully produced hydrogen gas from palm oil mill effluent (POME). In this study, central composite design and response surface methodology were applied to determine the optimum conditions for hydrogen production (Pc) and maximum hydrogen production rate (Rmax) from POME. Experimental results showed that the pH, temperature and chemical oxygen demand (COD) of POME affected both the hydrogen production and production rate, both individually and interactively. The optimum conditions for hydrogen production (Pc) were pH 5.69, 36degreeC, and 92g COD/l; with an estimated Pc value of 306ml H2/g carbohydrate. The optimum conditions for maximum hydrogen production rate (Rmax) were pH 6.52, 41degreeC and 60g COD/l; with an estimated Rmax value of 914ml H2/h. An overlay study was performed to obtain an overall model optimization. The optimized conditions for the overall model were pH 6.05, 36degreeC and 94g COD/l. The hydrogen content in the biogas produced ranged from 60% to 75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.