Assessing flood hazard, vulnerability and integrated risk has long been recognised as an important input for the formulation of policies aiming at flood risk management. This investigation is an endeavour to assess hazard, vulnerability and risk due to flooding, using an indicator‐based methodology incorporating stakeholders’ knowledge and multicriteria evaluation in geographic information system (GIS) to achieve community‐based assessment. The framework developed in this work is illustrated for the district of Dhemaji, a chronically flood‐affected area in the Upper Brahmaputra River valley. Results show spatial distribution of hotspots of flood hazard and vulnerability and locations at risk at regional and subregional level. The emerged risk pattern indicates that vulnerability indicators are more significant contributors than hazard indicators while calculating risk for the Upper Brahmaputra River valley. The methodology provides a dynamic platform where the flexibility in uses of hazard and vulnerability indicators, depending on variation in physical and socioeconomic setup, is possible.
Satellite-based flood assessment for extent and severity is very crucial input before, during, and after a flood event has occurred. Though optical remote sensing data has been widely used for flood hazard mapping, Synthetic Aperture Radar (SAR) data is preferred for detecting inundated areas and providing reliable information during a flood event due to its capability to operate in all weather and day/night time. Availability of cloud-free optical images during monsoon over north eastern India is a rarity. SAR data also has the advantage of detecting inundation under vegetated areas due to its penetration capabilities and sensitivity to soil moisture. The present study is an attempt to use SAR data for flood monitoring of the Kaziranga National Park (KNP) during monsoon, 2017. Every year, animals are washed away by floods and most of them migrate to higher grounds in order to escape from the rising water levels. Flooding events are common in the study area during the monsoon season due to high rainfall and its close proximity to the Brahmaputra River. Dual polarized (VV and VH) Sentinel-1 SAR images obtained for the entire monsoon period in 2017 were used to create inundation maps of the KNP. Two flood waves were observed in July and August, the second of which is considered to be one of the worst flooding events inundating most areas of the park. The use of SAR data for monitoring of flood events can be very crucial for identifying locations for building animal shelters and finding routes for rescue and relief operations during the disaster.
The Brahmaputra is a unique dynamic river in the world with intense braiding and critical bank erosion. Both erosion and deposition are continuous processes in the river in an attempt to reach a new equilibrium in channel geometry and morphology by the ever dynamic nature of flow. Erosion and deposition of the river have link to land use and land cover (LULC) as the land cover is under constant change in a dynamic landscape constantly shaped by continuous erosion and deposition. The objective of the present work is to evaluate the extent of erosion and deposition along the Brahmaputra river and change in the LULC of the Brahmaputra river in Assam, India. Remote sensing and geographic information system (GIS) techniques were utilised to extract information from Landsat images. Total area of erosion and deposition during 1973-2014 was 1557 and 204 km 2 , respectively. Increase in area (28%) of the Brahmaputra during 1973-2014 is not solely due to bank erosion, but also for the bifurcation of streams without the loss of land. LULC study has revealed that 29% area was occupied by active channels and 71% was occupied by bars in 2014. Maximum reaches experienced reduction of the submerged part in 2014 compared to 1994 in the post-monsoon months with an overall decrease from 37% to 29%. A reduction in natural grassland and forest has been observed with a corresponding increase in agricultural practices in different bars and islands of the Brahmaputra in Assam during 1994-2014.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.