Controlled release of food ingredients and their protection from oxidation are the key functionality provided by microencapsulation. In the present study, pomegranate seed oil, rich in conjugated linolenic acid, was microencapsulated. As encapsulating agent, sodium alginate or trehalose was used. Calcium caseinate was used as the emulsifier. Performances of the two encapsulants were compared in respect of the rate of release of core material from the microcapsules and stability of microcapsules against harsh conditions. Microencapsulation was carried out by preparation of an emulsion containing calcium caseinate as the emulsion stabilizer and a water-soluble carbohydrate (either sodium alginate or trehalose) as the encapsulant. An oil-in-water emulsion was prepared with pomegranate seed oil as the inner core material. The emulsion was thereby freeze-dried and the dried product pulverized. External morphology of the microcapsules was studied under scanning electron microscope. Micrographs showed that both types of microcapsules had uneven surface morphology. Release rate of the microcapsules was studied using UV-spectrophotometer. Trehalose-based microcapsules showed higher release rate. On subjecting the microcapsules at 110 °C for specific time periods, it was observed that sodium alginate microcapsules retained their original properties. Hence, we can say that sodium alginate microcapsules are more heat resistant than trehalose microcapsules.
The present work describes the isolation of α- and β-carotene from crude palm oil and their antioxidant potential in an in vitro model. Pure product was isolated by the method adopted. Antioxidant activities of the isolated α- and β-carotene were analyzed in five different concentrations of 0.001, 0.005, 0.01, 0.05, and 0.1% (w/v). From the several assays conducted, an observation was made that the antioxidant activity of the product shifted between antioxidant and prooxidant effects depending on the concentration and the system analyzed. The metal chelation, DPPH radical scavenging, and superoxide scavenging activities showed almost similar results in terms of high activity at lowest concentrations. ABTS-scavenging activity was displayed only by a particular antioxidant concentration of 0.1%. Lipid peroxidation assay pronounced the activity of 0.1% antioxidant in inhibiting oxidation of sensitive bioactive lipids. In vitro antidenaturation test again specified the efficacy of low concentrations in preventing protein denaturation. Through this study a definite dosage formulation for consumption of carotenoids is being proposed which will enhance health promotion and prevent chronic diseases when taken as fortified foods or dietary supplements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.