Sialic acids are abundant in the central nervous system (CNS) and are essential for brain development, learning, and memory. Dysregulation in biosynthesis of sialo-glycoconjugates is known to be associated with neurological disorders, CNS injury, and brain cancer. Metabolic glycan engineering (MGE) and bioorthogonal ligation have enabled study of biological roles of glycans in vivo; however, direct investigations of sialoglycans in brain have been intractable. We report a simple strategy utilizing carbohydrate-neuroactive hybrid (CNH) molecules, which exploit carrier-mediated transport systems available at the blood-brain barrier, to access brain via tail vein injection in mice. Peracetylated N-azidoacetyl-d-mannosamine (AcManNAz) conjugated with neuroactive carriers, namely, nicotinic acid, valproic acid, theophylline-7-acetic acid, and choline, were synthesized and evaluated in SH-SY5Y (human neuroblastoma) cells for MGE. Intravenous administration of CNH molecules in mice (C57BL/6J and BALB/cByJ) resulted in robust expression of N-azidoacetyl-neuraminic acid (NeuAz)-carrying glycoproteins in both brain and heart, while the nonhybrid molecule AcManNAz showed NeuAz expression in heart but not in brain. Successful neuroactive carriers were then conjugated with N-butanoyl-d-mannosamine (ManNBut) with a goal to achieve modulation of polysialic acid (polySia) on neural cell adhesion molecules (NCAM). PolySia levels on NCAM in adult mice were reduced significantly upon administration of AcManNBut-nicotinate hybrid, but not with AcManNBut. This novel application of MGE not only offers a noninvasive tool for investigating brain glycosylation, which could be developed in to brain mapping applications, but also serves as a potential drug by which modulation of neural glycan biosynthesis and thus function can be achieved in vivo.
Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.
The COVID-19 disease continues to cause devastation for almost 3 years of its identification. India is one of the leading countries to set clinical trials, production, and administration of COVID-19 vaccination. Recent COVID-19 vaccine tracker record suggests that 12 vaccines are approved in India, including protein subunit, RNA/DNA, non-replicating viral vector, and inactivated vaccine. Along with that 16 more vaccines are undergoing clinical trials to counter COVID-19. The availability of different vaccines gives alternate and broad perspectives to fight against viral immune resistance and, thus, viruses escaping the immune system by mutations. Using the recently published literature on the Indian vaccine and clinical trial sites, we have reviewed the development, clinical evaluation, and registration of vaccines trial used in India against COVID-19. Moreover, we have also summarized the status of all approved vaccines in India, their associated registered clinical trials, manufacturing, efficacy, and their related safety and immunogenicity profile.
Anisocoria observed under anaesthesia is an alarming sign for anaesthesiologist and is suggestive of possible of neurological involvement due to raised intracranial pressure, intracranial hemorrhage, or space occupying lesions. We report the occurrence of new onset anisocoria in a patient undergoing video assisted thoracoscopic surgery under anaesthesia. The various etiologies of anisocoria under anaesthesia and their implication have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.