The concepts of differentiation and integration for matrices are known. As far as each matrix is differentiable, it is not clear a priori whether a given matrix is integrable or not. Recently some progress was obtained for diagonalizable matrices, however general problem remained open. In this paper, we present a full solution of the integrability problem. Namely, we provide necessary and sufficient conditions for a given matrix to be integrable in terms of its characteristic polynomial. Furthermore, we find necessary and sufficient conditions for the existence of integrable and non-integrable matrices with given geometric multiplicities of eigenvalues. Our approach relies on properties of some special classes of polynomials, namely, Shabat polynomials and conservative polynomials, arising in number theory and dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.